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1 Introduction and Summary

The purpose of the current thesis is to develop and test a pricing model for Danish
callable1 mortgage backed bonds (MBBs). MBBs account for more than 52% of the
Danish bond market with a total outstanding face value of 652 billion DKK as of May
1992. MBBs are issued by mortgage credit institutions and each bond is backed by a
pool of several thousands individual mortgages.

The pricing of MBBs is made complicated by the so-called prepayment option. The
prepayment option allows each mortgage holder to prepay the loan at any time and
change to a new loan at the current market rate of interest. As mortgage holders tend to
prepay high coupon mortgages when market rates are low the prepayment option may
severely affect the return to bond holders.

Table 1.1: Bonds listed at the Copenhagen Stock Exchange, May 19922.

Face value Number Face No. of
Bondtype million  of  value issues

DKK issues (%) (%)

Non-callable bonds 393,979 359 31.76 16.95

Callable
mortgage-backed bonds 651,578 1,713 52.53 80.88

Index-linked bonds 121,421 11 9.79 0.52

Adjustable rate bonds* 73,502 35 5.93 1.65

Total 1,240,480 2,118 100.00 100.00

1 As shown in chapter 5 the prepayment option is equivalent to a call option held by the mortgage-
owner.

2 Source: Numbers are drawn from the official database of the CSE, May 7 1992. Foreign currency
bonds as well as lottery bonds have been excluded. *) Includes 14 MBB issues totalling 2,095
million DKK.
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The pricing model is based on a so-called arbitrage-free term structure model in which
the current zero coupon yield curve combined with an estimate of future interest rate
volatility determine the possible stochastic evolution of future interest rates. In this
approach bonds with interest dependent cash flows are priced relative to current
market prices of non-callable fixed-payment bonds. The arbitrage-free model is
extended to an after-tax setting.

Chapter 2 discusses the estimation of zero coupon term structures on the Danish bond
market using weekly data for the period January 1985 to July 1992. It is shown how
the appropriate estimation techniques have changed in the period due to the lack of
long term non-callable bonds. Starting in 1988 the results point to an increase in the
efficiency of the government bond market compared to the 1985-87 period.

In chapter 3 we review the arbitrage-free models of the term structure and a general
no-arbitrage MBB pricing model is presented which depends on the characteristics of
the MBB, the stochastic evolution of the future interest rates and a so-called prepay-
ment function. The prepayment function determines the fraction of mortgage holders
who prepay their loan in a single period. By varying the specification of this function,
different pricing models arise.

A substantial part of the Danish literature on MBBs has analysed how the tax system
influences the prepayment behaviour of the individual borrowers. Chapter 4 contains a
discussion of bond market equilibrium with differential taxation. As shown by several
authors unlimited tax-arbitrage possibilities may arise in a bond market, if institutional
investors, fully taxed of capital gains as well as interest income, can trade freely with
private investors, who are taxed of interest income only. An institutional environment
is proposed, in which no unlimited tax-arbitrage possibilities exists even though short-
sale is permitted for bonds of all maturities. The institutional restrictions needed can be
seen as a strict version of the current Danish minimum interest rate rules. The chapter
extends the analysis to a stochastic setting and develops a computationally efficient
modification of the arbitrage-free models, which allows for the calculation of pre-tax
as well as after-tax prices of options. The resulting model is used for all after-tax
calculations in the following.

The remaining chapters are concerned with the specification and estimation of the
prepayment function. Chapter 5 studies optimal prepayment behaviour. The prepay-
ment option is viewed as an American call-option on a non-callable mortgage. Using
the theory of American options a critical level of interest rates is determined at which a
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rational mortgage holder would exercise the option. The chapter shows how optimal
prepayment behaviour depends on coupon rate, time to maturity, prepayment costs, the
tax status of the individual borrower as well as the special Danish cash-loan system.

In a separate analysis the prepayment model is extended to allow for the so-called
delivery optioni.e. the possibility of a change to a higher coupon loan for tax reasons.
It is shown that the value of the delivery option is due to the existence of differentially
taxed investors. A dynamic debt-management model is proposed in which the rational
borrower determines the optimal exercise of the delivery as well as the prepayment
option. The delivery option is shown to have a minor effect on prices for MBBs
through its influence on prepayment behaviour.

The chapter finally shows that a simple American option model in which all borrowers
prepay simultaneously implies discontinuities in the estimated prices. This makes the
model unsuitable as the basis of a MBB pricing model.

Any empirical useful model for MBBs must incorporate the heterogeneity of individ-
ual mortgage holders and the fact that their prepayment behaviour is determined by
many factors not all of which can be explained by rational behaviour. In chapter 6 we
develop a model in which the individual mortgage holder prepays his mortgage when a
stated required gain (RG) is reached. The required gain is assumed to be normally
distributed across individual borrowers. Different kinds of prepayment behaviour can
be described by different choices of the prepayment distribution.

The payments from the MBB can be found as follows: At any given point in time the
mortgage holders observe the gain implied by the current level of the term structure.
Borrowers, for whom the observed gain exceeds the required gain, prepay their loans,
while the rest continue their scheduled payments. The prepayment rate can thus be
found from the specified mean and standard deviation of the required gain distribution.
Contrary to the American option model of chapter 5 in which the prepayment rate was
either zero or 100%, the RG-model allows for a continuum of prepayment rates.

The chapter states the different prepayment motives and discusses how they can be
represented in the required gain model. The dependency of estimated prices on the
level of interest rates, the volatility, the current shape of the initial term structure, the
time to maturity, the required gain distribution and the tax rate is analysed and the
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results are compared to the American option model of chapter 4. It is shown that
optimal prepayment behaviour can be incorporated if the RG-distribution is made
dependent on remaining time to maturity and perhaps other parameters as well.

Chapter 6 continues with a discussion of duration and convexity measures for MBBs.
It is shown that negative convexity makes fairly priced MBBs inferior to non-callable
bonds of the same duration except for small changes in interest rates. The chapter ends
with an empirical example in which the difference in prepayment rates from three
similar MBB-issues is attributed to partly unobserved differences in the composition of
borrowers. As a by-product the example shows some potential with respect to empiri-
cal use.

Chapter 7 contains the development, estimation and test of a complete pricing model
for Danish mortgage-backed bonds. We use a version of the required gain model of
chapter 6 in which the prepayment behaviour is estimated from observed prepayment
rates. The estimation is based on a newly constructed data-set consisting of published
quarterly prepayment rates for the period 1988-92. It is the first empirical prepayment
model for the Danish market, but similar models have in recent years been developed
for the US market.

Chapter 7 starts by a survey of pricing models proposed for the US mortgage backed
securities market. The prepayment functions of the US-models are estimated on actual
prepayment experience explained by the history of interest rates as well as individual
characteristics of the mortgage pool in question. Contractual differences exists
between the US and the Danish market and a set of explanatory variables is proposed,
which allows for the special features of the Danish mortgage system.

The survey is followed by a brief summary of the data-set. Contrary to most US-
models the RG-model is based on a ’micro-economic’ decision model for the individ-
ual mortgage holder. It is shown how the decision model can be restated as a so-called
probit model and how the behaviorial parameters can be inferred from observed
prepayment data. Various specifications are tested and it is concluded that a simple
four parameter model provides a fair description of the historical prepayment beha-
viour from Danish MBBs. More sophisticated specifications should be tried as more
observations becomes available. The empirical analysis identifies a group of high-risk
bonds which probably contains a large share of corporate borrowers.
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The estimated prepayment function represents a handy summary of the historical reac-
tion of Danish mortgage holders to the changing level of interest rates. This knowledge
of borrowers behaviour is used in the general arbitrage-free bond pricing model
together with estimates of zero coupon yield curves and volatility. We derive some
estimates of prices and durations for a sample of 33 MBBs issued by Nykredit. Prices
and durations are calculated every four week in the period 1988 to 1992. The pricing
results indicate that MBBs have been relatively cheap for most of the period although
the general correspondence is close. We would thus expect a high return from these
bonds relative to non-callable bonds with similar risk.

The hypothesis is tested against a new data-set of four-weekly holding period returns
(HPR) for the period 1988 to 1992. HPR have been calculated for the 33 MBBs as well
as for all large non-callable government bonds. Annual plots of average return against
standard deviation show that the returns from the MBBs follow the prediction of the
model quite closely. These findings are confirmed by a preliminary regression model
on the full data set. The regression procedure allow us to adjust for the differences in
interest rate risk as well as the difference in non-callable yield. The preliminar results
indicates that average HPR for the 10%, 12% and especially 11% MBBs have been
above HPR for bonds of similar risk and non-callable yield.

It is furthermore shown the duration measures derived from the MBB pricing model
explains changes in HPR with a precision equivalent to the duration measures for
non-callable bonds although a simple adjustment must be used to compare the two.
This suggest that the MBB durations can be very useful in the calculation of hedge-
ratios, portfolio risk measures etc.

The regression finally indicates that active trading based on net present value estimates
from the pricing models could contribute considerably to increased performance from
MBBs as well as non-callable bonds.

The conclusion of the thesis is that the model developed provides a good description of
the Danish market for mortgage backed bonds. The model is based on arbitrage-free
pricing principles and it is tested on available data for prepayment rates, market prices
and holding period returns. The empirical approach provides a common foundation for
the discussion, test and use of these pricing models. As the estimation techniques
evolve and more data becomes available we expect the MBBs to be priced on a routine
basis with a degree of precision close to non-callable bonds.
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2 The Danish Term Structure 1985-1992

In this chapter we will discuss the estimation of zero coupon yield curves on Danish
bond data and present results based on weekly data in the period January 1985 to July
1992. Yield curve estimates is at the center of any kind of empirical bond analysis and
our estimates will later be used as input in the pricing model for mortgage backed
bonds developed in the following chapters.

Bond pricing models represents an important application but term structure estimates
may also contain information on the formation of expectations regarding future market
conditions. For an analysis of the time series dynamics of the Danish term structure we
refer to Tanggaard(1992), Tanggaard and Engsted (1992), who test different versions
of the expectations hypothesis using a cointegration approach.

A previous paper, Jakobsen and Tanggaard (1988), discussed yield curve estimation
results for the period from January 1985 to August 1988. Since 1988 several changes
have occurred in the Danish bond market. The number of official bond price quota-
tions has fallen due to the introduction of computerized trading systems. Secondly
mortgage prepayments driven by the low level of interest rates have affected the prices
of the callable mortgage backed bonds (MBB) used to estimate long term yields. Both
changes makes it hard to obtain valid estimates on long term yields. On the positive
side an increase in the efficiency of the market for government bonds has improved
estimates of short term zero coupon yields .

The yield curve estimation procedure is discussed in section 2.1. Section 2.2 addresses
the problems of sample selection and we end up by suggesting three different models.
The empirical estimates are compared in section 2.3. Section 2.4 shows some evidence
on the increased pricing efficiency of the Danish market for government bonds. Sec-
tion 2.5 contains the conclusions and some suggestions for further research.

2.1  The statistical model

The basic statistical framework for the estimation of zero coupon yield curves is now
broadly accepted and for a full development of the economic arbitrage arguments
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behind this model we refer to the literature3.

This section gives a brief résumé of the model used in Tanggaard and Jakobsen
(1988a) (TJ-88). It is a cross section type of model that prices bonds relative to each
other on one particular trading day4. Assume a sample of default-free, fixed-pay-
ment5 bonds with an vector of market prices . Let be an index of all
settlement dates in the sample and let be the non-stochastic payoff matrix
with entries of zero if the bond has no payment at date . is defined as the
vector of discount rates where a single element denotes the present value of
one DKK delivered at date . Finally we define the vector ofpresent values
as the product of the payoff matrix and the vector of discount rates , i.e.

.

In a perfect market the no-arbitrage condition implies an equality between and .

The interpretation is that payments due at the same date must be priced at the same
price across all bonds. In a perfect and complete market any deviation from this
’Law of One Price’ leads to risk free arbitrage opportunities. In real world markets
however various pricing errors must be taken into account. We assume that prices are
equal to their present values plus some additive error , i.e.

(2.1)

The pricing errors , , are assumed to be independently normal distributed

with heterogeneous variance . Chambers et.al.(1984) propose and Tanggaard and
Jakobsen(1987) further investigate the specification

(2.2)

N
N × 1 P m = 1...M

tm B N M
m D M 1

dm ≡ d(tm)
tm N 1 PV

B D
PV = B ⋅ D

P PV

tm

d(tm)

ε

P = B ⋅ D + ε

εn n = 1, .., N
σn

2

σn
2 = γ2 ⋅ Tn

δ

3 The first part of this section is taken from Jakobsen and Tanggaard(1988). McCulloch(1971) and
Carleton and Cooper(1976) were the first to apply regression techniques to the estimation of zero
coupon yields from available data on coupon bearing bonds. Our present model has been inspired
by the model of Chambers et.al.(1984). Tanggaard and Jakobsen(1988) and Tanggaard(1992)
contain a full description of the cubic spline methodology with a fuller set of references to the
international literature.

4 To simplify notation we have suppressed the dependence of all prices, cash flows and estimates on
the trading day used.

5 The terms ’fixed-payment’ or ’non-callable’ bond refer to bonds in which the future cash flow is
known with certainty as opposed for instance to the callable mortgage backed bonds analysed in
later chapters.
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where is the time to maturity of bondn, denotes that part of total variance, which

is unrelated to time to maturity and determines the degree of which affects
variance.

Setting gives the special case of homogeneous variance, but as shown in Tang-

gaard and Jakobsen (1987) this specification is strongly rejected on the Danish bond
market, in favour of a specification in which the variance increases with time to
maturity. A fixed value of as proposed in TJ-87 has been used throughout the
estimations6 indicating that variance increases linearly with time to maturity.

To estimate the model a parameterisation of the individual discount rates is

needed. We have chosen the following specification

(2.3)

in which the continuously compounded yield curve is taken to be a cubic spline7.

To be more specific the time scale is divided into segments . The points
are called knots. The cubic spline is defined as a twice continuously

differentiable function which coincides with a polynomial of degree at most three in
each of the G segments. This definition leaves a total of independent parameters.
To complete the definition one can choose two a priori restrictions, cf. below. Given
these limitations it is possible to parameterize the cubic spline by its values in the G+1
knots.

Different versions of the cubic spline model result according to the choice of a priori
restrictions. Two different versions referred to as theflat splineand thesoft splinewill
be used in the present paper. To get thesoft splinethe second derivative at is set to
zero. As shown in Jakobsen and Tanggaard(1988) (JT-88) this reduces the short rate
flexibility and thereby increases reliability of short rate estimates. The second restric-
tion restricts the term structure estimates of two last knots to be equal.
This reduces long rate flexibility but yield curve estimates between and may
vary somewhat. The soft spline has a total of independent parameters.

γ2Tn

δ Tn

δ = 0

δ = 1

d(tm)

d(t) = exp(−R(t) ⋅ t)

R(t)
[τh − 1, τh]

τh, h = 1, …, G

G + 3

τ0

R(τG − 1) = R(τG)
τG − 1 τG

G + 1

6 Other measures like duration could have been used to adjust for heteroscedasticity, as done in
JT-88.

7 Readers interested in a formal derivation of the cubic spline models are referred to Tanggaard and
Jakobsen (1988a).
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If the moments of and are set to zero one obtains thelinear splinediscussed in

the above mentioned paper. In this model the cubic spline is linear in the last segment.
Finally the flat splineemerges, if we restrict the linear spline, so that .
The flat spline has a total of G independent parameters.

As discussed in JT-88 the flat spline provides more reliable long rate estimates, but
with an important caveat. If the flat segment starts ’too early’ one may distort the
pricing of mid-term bonds. It is therefore very important that the sample contains
bonds with a long enough maturity to allow the flat segment to start at say 18 years.

Despite its complicated definition the cubic spline parameterization proposed in TJ-
88a is linear in the parameters and in its unrestricted forms it can fit any shape of
yield curve. Compared to e.g. standard polynomials the correlation between estimated
parameters tends to be low, which allows for a relatively independent estimation of
different yield curve segments.

A range of alternative parameterizations have been proposed in the literature. Tang-
gaard and Jakobsen(1988b) use a non-nested test methodology to compare some of the
most popular ones including the discount function splines of McCulloch(1976), the
yield curve polynomials of Chambers et.al.(1984), various exponential formulations as
well as the one-factor model of Cox, Ingersoll and Ross(1985) (CIR). The analysis
concluded that the cubic splines, even in a flat spline version, gave the best overall fit
to bond prices.

The CIR model emerges as the solution to a one-factor equilibrium model and pro-
vided the equilibrium model is a fair description of reality it may have some a priori
advantages. The assumptions of the equilibrium model include a constant short term
volatility and a fixed long term interest rate. These assumptions are hard to justify in
practice at least for nominal bonds. Several authors including Brown and Dyb-
vig(1986) and Barone et.al.(1991) have used the CIR specification, but allowed the
parameters to be estimated on daily cross section data using a statistical specification

τG − 1 τG

R(τG − 1) = R(τG)

R(τk)
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like (2.1). The absence of intertemporal time-series restrictions on the parameters
conflicts with the assumptions of the CIR model and used in this way the CIR-specifi-
cation is just a non-linear functional form on line with several others8.

To estimate the cubic spline model we have used the maximum likelihood approach
described in TJ-88a. Outliers are eliminated by a two-step procedure. First the estima-
tion is performed on the full sample and standardized residuals are calculated accord-
ing to the heteroscedastic specification (2.2) above. Bonds with residuals above 2
times the adjusted standard deviation are then eliminated, and a new estimation is
performed on the reduced sample9.

As shown in JT-88 short term estimates from the flat spline are very volatile, while the
soft splines10 obtains more stable short rate estimates. To improve the flat-spline model
we apply a two-step procedure. First a soft spline is used to estimate the short term
interest rate, and secondly the flat spline is estimated with fixed at its soft spline
value11.

2.2  Problems of sample selection

To estimate the term structure of interest rates prices and cash flows for a sample of
bonds are needed. The ideal sample should consist of high liquidity bonds, distributed
throughout the maturity spectrum and void of any obstacles due to tax considerations
or call features.

R(0)

8 Barone et.al.(1991) estimate the CIR-specification using a sample of Italian government bonds
with a maximum maturity of 7 years. As expected their estimates on long term yields are highly
volatile. One of the ’attractions’ of the CIR-model is that it possesses a limited set of shapes.
Estimated yield curves are therefore always aesthetically pleasing but the drawback may be that
the model misprices bonds of certain maturities. Some evidence on mispricing is given in the
Barone et.al. and Brown and Dybvig papers. We intend to investigate the pricing ability of the
CIR-model in a later paper using Danish bond market data.

9 Bonds with less than three month remaining are always excluded due to illiquidity and rounding
errors, cf. JT-88.

10 The short-end restriction of the soft spline corresponds to thenormal splinemodel analysed in
JT-88.

11 The computations were done using RIO ver. 2.1, which is a PC-program for the estimation and
application of zero coupon yield curves. Different versions of RIO have been used since 1986 by
almost all major Danish financial institutions. The system has been jointly developed by Carsten
Tanggaard and the author, cf. Jakobsen and Tanggaard(1992).
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Figure 2.1 shows the total number of official bond price quotations on the Copenhagen
Stock Exchange for each Wednesday in the period January 1985 to July 1992. There is
a sharp reduction in the number of official price quotations around January 1989 due
to the introduction of a decentralized electronic trading system. Before 1989 the offi-
cial price was defined as the latest bid at the close of trade, while the official price in
the electronic trade system is defined as a daily average of market prices12. This
institutional change has made fewer bond quotations available for estimation purposes.

Figure 2.1:

The number of

official bond

price quota-

tions at the

Copenhagen

Stock Exchang

e,1985 to

1992.

Table 2.1 gives an overview of bonds listed at the Copenhagen Stock Exchange as of
May 7 1992. Numbers are given in millions DKK outstanding face value for different
assumptions on callability, coupon rates and time to maturity. Corporate bonds,
floating rate and indexed linked bonds, bonds denominated in foreign currencies as
well as bond issues below DKK 100 million in outstanding face value have been
excluded in the table and from the following sample selection. This leaves us with a
total of 644 bonds.
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12 At the previous open outcry auction dealers traded one bond at a time, which increased focus on
less liquid issues. Note that a latest bid price could be quoted even if no trading took place. In the
electronic trading system dealers have to watch all bonds simultanously, and obvious technical
restrictions have forced dealers to concentrate on the more liquid issues.
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Table 2.1: Outstanding face value in million DKK of selected bonds listed at the
Copenhagen Stock Exchange (CSE), May 7 1992, grouped by callability, years to
maturity and coupon rate. Source: Calculations based on the CSE database.

Non-Callable bonds

Maturity 0-5 5-10 10-15 15-25 25- Total %

Coupon
% 23,795 2,133 14,950 1,657 348 42,883 4.24

<= 8 152,877 80,983 3,124 2,967 0 239,951 23.70
9 36,482 14,061 18,329 6,852 0 75,724 7.48

10 229 665 298 2,002 985 4,179 0.41
11 0 24,097 0 1,063 0 25,160 2.49
12

Total 213,383 121,939 36,701 14,541 1,333 387,897 38.32

% 21.08 12.05 3.63 1.44 0.13 38.32

No. of
bonds 70 47 18 23 6 164

Callable mortgage backed bonds

Maturity 0-5 5-10 10-15 15-25 25- Total %

Coupon
<= 8 368 4,012 9,204 12,632 15,939 42,155 4.16

9 1,560 1,662 38,443 57,797 71,174 170,636 16.86
10 2,367 27,033 93,921 162,785 41,433 327,539 32.36
11 0 577 0 18,818 10,003 29,398 2.90
12 0 11,551 12,893 23,192 6,987 54,623 5.40

Total 4,295 44,835 154,461 275,224 145,536 624,351 61.68

% 0.42 4.43 15.26 27.19 14.38 61.68 61.68

No. of
bonds 20 66 84 162 148 480

Callable mortgage backed bonds accounts for 62% of all large bond issues. The
remaining 38% as measured by face value is non-callable bonds, mainly issued by the
Danish government. Long term bonds above 10 years are dominated by MBB issues
which accounts for 92% of all outstanding face value. Non-callable bonds have an
equally dominating 87% share of maturities below 10 years. Tabulations done on other
dates throughout the sample period show a similar pattern.
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Figure 2.2: Plot of

notation frequency

for large non-call-

able bonds.

To estimate the term structure we have selected two different samples. The first
sample consists of non-callable government bonds supplemented by long non-callable
bonds from the mortgage credit institution DLR. Coupon rates below 9% are excluded
to avoid biases introduced by taxation, cf. section 4.2. Finally we require a notation
frequency above 75%13. A total of 59 bonds passed this test somewhere between
January 85 to June 88 while 55 bonds participated in the remaining period.

As shown below the final estimations on the non-callable sample includes only 1-2
bonds above 13 years of maturity. The second sample was drawn according to the
same criteria but a number of 9% MBBs with maturities above 13 year were included
to allow the estimation of long term yields. Higher coupon MBBs were not included
due to prepayment risk. The mixed sample contained 86 bonds in the period 85-88 and
82 bonds in the period 88-92.
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13 The calculation of notation frequency divides the number of official bond quotations by the
number of days for which the bond has been traded. As shown in Sørensen(1991) this requirement
reduces estimation errors considerably.
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2.3  Overview of the empirical results

The following section reviews estimation results for three different models. On the
non-callable sample a soft spline (NC-SS) as well as a flat spline model (NC-FS) has
been estimated, both with knots fixed at 0, 2, 5, 13 and 30 years. For the mixed sample
we have estimated a flat spline model (MS-FS) with knots at 0, 3, 8, 18 and 30 years.

Table 2.2:Average estimation results from the three term structure models

No. of Std. Gam- Sample- Out- No. of bonds
estim. dev ma size liers in segment

Non-callable 0-2 2-5 5-13 13-30

Soft spline 393 0.34 0.163 27.1 1.6 10.7 8.0 7.0 1.5

Flat spline 393 0.46 0.192 27.1 1.6 10.7 8.0 7.0 1.5

Mixed sample 0-3 3-8 8-18 18-30

Flat spline 393 0.67 0.217 45.3 2.2 14.0 8.9 6.5 8.9

Average estimation results are shown in table 2.2. Standard errors are fairly small.
Average errors are lowest for the non-callable soft spline and highest for the mixed
sample flat spline. This is partly caused by differences in sample-maturity. Comparing
the maturity-adjusted standard deviation gamma, it is seen that the MS-FS-model is
roughly equivalent to the non-callable flat-spline model. The NC-SS gamma-value of
0.163 implies an average standard deviation of 0.163 (16 basis point) for one-year
bond prices and a 52 basis point average pricing error on 10 year bonds.

Yield curve estimates from the three models are shown in figures 2.3-10 while figures
2.11 and 2.12 contain plots of standard deviation and gamma14. Term structure changes
can be summarized by the non-callable flat spline estimates on 0, 5 and 20 year yields
shown in figure 2.3. According to this plot a number of shifts have taken place15. Term

14 All yield estimates use annual compounding. The plots of standard deviation and gamma has been
smoothed by a 6 week simple rolling average.

15 An explanation of term structure changes according to changes in macroeconomic variables would
be highly relevant, but it is outside the scope of the current paper. Readers are referred to The
Quarterly Bulletin from the National Bank of Denmark.
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structure estimates starts January 1985 with an upward sloping yield curve. In the
period from January 1985 to April 1986 a general fall in the level accompanied by a
downward change in slope takes place ending April 1986 at an almost flat term
structure around 9%. In summer 1986 the market returns to an upward sloping yield
curve and the level increases sharply. 1987 is rather stable with small parallel shifts
being the main attraction. During 1988 there is an almost parallel downward shift with
short rates reaching a bottom around 8%. 1989 is very volatile with estimated short
rates changing upwards more than 4 percentage point. In October 1988 the market
changes overnight to a downward sloping yield curve. In February 1990 an increase in
long rates leads to a flat yield curve, but from January 1991 up to June 1992 long rates
fall while short rates increase resulting in a downward sloping yield curve at a very
low level of long rates. The last few observations show some sign of an increase in
long rates, possibly caused by the outcome of the EEC referendum.
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Term

struc-

ture esti-

mates for

the non-

callable

flat spline

model.

02-01-85 02-01-86 30-12-86 30-12-87 28-12-88 27-12-89 27-12-90 27-12-91

8

9

10

11

12

13

14

15

Date

Yield

0 year yield 5 year yield 20 year yield

Non-callable bonds
Flat spline



  2.3   Overview of the empirical results 19
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Figure 2.6: Comparison of yield curve estimates on different dates.
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The non-callable soft-spline model (NC-SS) consistently shows the lowest pricing
errors for the sample of non-callable bonds. That can be attributed to the very high
flexibility of the soft spline. But as a predictor of longer term yields the model
performs badly. Compared to the flat spline models the NC-SS model has very little a
priori restriction on long term shape and the non-callable sample contains no

02-01-85 02-01-86 30-12-86 30-12-87 28-12-88 27-12-89 27-12-90 27-12-91

7

8

9

10

11

12

13

14

15

16

17

18

19

Date

Yield

Non-callable bonds
Soft spline

Non-callable bonds
Flat spline

9% callable bonds incl.
Flat spline

Estimates of 20 year yield

02-01-85 02-01-86 30-12-86 30-12-87 28-12-88 27-12-89 27-12-90 27-12-91

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Date

Std.dev.

Non-callable
Soft spline

Non-callable
Flat spline

Mixed sample
Flat spline

6 weeks rolling average



  2.3   Overview of the empirical results 23
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information on long term yields beyond 13 years. This explains the erratic long term
yield estimates shown in figure 2.4 We can conclude that the NC-SS should not be
used if long term estimates are needed.

The non-callable flat-spline model (NC-FS) was restricted to a constant yield from 13
years of maturity. This leads to stable estimates on long term yields, but as mentioned
in section 2.1 the flat segment may start to early. For the period 1989 to 1992 the
model seems to do very well with standard errors almost identical to the NC-SS model.
For the period from 85-88 the model performs worse, especially in 1987. In this period
yield curves are mostly upward sloping and the constant yield restriction results in
large standard errors and gamma values, even compared to the mixed sample model.
We can conclude that the constant yield restriction starting at 13 years is well suited
for the 89-92 regime, but the NC-FS model should not be used for the pre-88 data.

The mixed-sample flat-spline model (MS-FS) includes long term MBBs which allow
the estimation of long term rates. Compared to the NC-FS model the constant yield
restriction starts at 18 years, and we would expect this model to be more applicable in
periods of upward sloping yield curves. This expectation is confirmed by the plots. In
the period 87-88 gamma as well as 5 and 10 year yield estimates for the MS-FS model
compares closely with the NC-SS model and long term estimates from the MS-FS is
far more stable. In periods with high prepayment risks we would expect an upward
bias in long term estimates as the 9% MBBs should be priced below similar non-call-
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able bonds. Comparing with NC-FS estimates for the period 1991-92 we see a spread
between long term estimates of approximately 100 basis point. This spread can be
attributed to prepayment risks. A similar bias is not found in the short period of low
interest rates around April 1986. It seems as if the low rate period has been too short
for prepayment risk to enter 9% MBB-prices.

To summarize we cannot select one of the three models as the uniformly best model
for all purposes or for the entire sample period. The NC-SS provides the closest fit to
the sample of non-callable bonds, but its long term estimates are poor. For analysis of
yields up to 10 year the NC-SS model is very well suited however. For longer term
yields the flat-spline models are needed. In periods with low prepayment risks the
MS-FS is probably the best model but its long term estimates becomes upward biased
at low levels of interests. In these periods the NC-FS could be used instead.

Several routes could be taken to improve the model. One could search for a parame-
terization which provides stable long term estimates with no distortion of mid-term
bond prices. Alternatively one could hope for more long non-callable bonds to enter
the market and recent steps taken by the mortgage credit institutions seems to point in
this direction. And finally one could try to calculate the value of the prepayment option
and adjust MBB-prices accordingly.

2.4  The efficiency of the Danish bond market

The plots of standard deviation and gamma for the non-callable sample show a sharp
reduction in pricing error beginning in the middle of 1988. This could indicate an
increase in market efficiency.

Figure 2.13 compares weekly estimates of net present value (NPV) defined as the
difference between present value and market price for two different government
bonds. Present value estimates are obtained from the NC-SS model. The bond labelled
’12% Ser 2001’ is a 12% serial bond maturing in 2001, while ’10% Stl. 1994’ is a 10%
ordinary bond maturing 1994. The two bonds have comparative Macaulay durations
for most of the period.

The 12-2001 serial bond seems to be consistently undervalued for most of the period
up to mid 1988. The ordinary 10-1994 bond seems equally overvalued with market
prices up to 400 basis points above present value. From mid 1988 the mispricing
disappears and NPV for the two bonds lies close to zero for the rest of the period.
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The undervaluation of serial loans relative to ordinary loans is of more general nature
as discussed in the papers by Jakobsen and Tanggaard(1987,1989). Our main explana-
tion has been that traders tend to use a simple yield-to-maturity comparison between
bonds of equal maturities as their prime instrument for the assessment of relative
value. In periods of upward sloping yield curves this would explain the observed
mispricing. When yield curves flatten the mispricing disappears. Other factors like the
broad acceptance of zero coupon yield curve techniques and the introduction of an
electronic trading systems may have helped to increase efficiency further.

2.5  Conclusion

This chapter has dealt with the estimation of zero coupon yield curves on the Danish
bond market for the period 1985-1992. The primary conclusion has been the follow-
ing.

Estimation of yield curves up to 10 years can be done with rather high precision using
a sample of non-callable government bonds.

Estimates of longer term yields are harder to come by due to the lack of large long
term non-callable bonds. We have suggested the use of a mixed sample in which the
non-callable bonds have been supplemented by 9% callable mortgage backed bonds.
This model does well in the period from 85-90, but in the remaining part of the sample
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period the 9% MBBs are subject to a downward price bias caused by prepayment risks.
For this part of the sample period a flat spline model estimated on non-callable bonds
seems a better choice.

Estimation errors showed an increase in market efficiency starting 1988. Part of this
increase could be explained by the flattening of the yield curve, but the widespread
acceptance of more sophisticated trading techniques may also be an important factor.

The estimated yield curves can be used as the basis for more sophisticated pricing
models. This is the subject of the following chapters.
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3 Arbitrage-Free Pricing Models

The last chapter was devoted to the estimation of yield curves for fixed-payment
non-callable bonds. These bonds take a 32% share of the Danish bond market with
DKK 394 billion of outstanding face value16. The remaining part of the bond market
consist of bonds in which the cash-flow depends on the future development of interest
rates. This includes the 53% in callable mortgage backed bonds as well as the adjust-
able rate bonds taking up 6%. To price such issues a stochastic term structure model is
needed. The same applies to contracts traded in closely connected markets like options
on bonds, swaps, caps, floors, collars etc.

The purpose of the present chapter is to develop an arbitrage-free pricing model for
Danish callable mortgage backed bonds (MBBs). The model could use any kind of
stochastic term structure model, but we have chosen the model by Black, Derman and
Toy(1990) (BDT), which is a simple arbitrage-free, one-factor model using a multipli-
cative binomial assumption on the short term interest rate distribution. The BDT-
model is probably one of the most widely used discrete time stochastic term structure
models.

Section 3.1 contains a review of arbitrage-free pricing models with special emphasis
on the BDT-model. In section 3.2 it is shown how well-known interest rate dependent
securities like options on bonds and callable bonds can be priced by an arbitrage-free
model. Finally section 3.3 contains a description of MBBs and develops a framework
for the pricing of these rather complicated securities. The detailed specification of this
model is the subject of later chapters.

3.1  Arbitrage-free models of the term structure

Stochastic term structure models describes the future stochastic evolution of the term
structure as driven by one or more factors. One-factor models typically use the short
term interest rate as the underlying source of interest rate risk, while two-factor models
may include short rate volatility, long rates or yield spreads as a second source of risk.

16 The figures are taken from the database distributed by the Copenhagen Stock Exchange as of May
7, 1992. Indexed linked bonds as well as bonds issued in foreign currencies have been excluded.
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As all asset risk can be attributed to the same basic factors, the well-known no-arbi-
trage argument restricts the price behaviour in a way which can be used to price any
asset relative to the underlying factors.

The traditional approach17 specifies a stochastic model of the underlying factors and
deduces the possible term structures from these data. The traditional models are typi-
cally estimated on historical time series data. A problem with this approach is that the
models may not be able to fit the current term structure.

The arbitrage-free models18, initiated by the Ho and Lee(1986) paper, take available
market data, like the term structure as input and restrict the stochastic process of the
underlying factors in such a way that the no-arbitrage condition is consistent with these
data. Accordingly the derived stochastic process may be unable to fit historical time
series data.

Both types of models have their strengths. If one is concerned with theexplanationof
the current term structure the traditional approach would be appropriate, but if the
main purpose is to price derivative assets relative to prices of non-callable bonds the
arbitrage-free models are more convenient.

While the arbitrage-free models by Ho and Lee(1986) (HL) and Black, Derman and
Toy(1990) (BDT) used a binomial setting, it is now evident that most popular continu-
ous time stochastic models could be expressed as an arbitrage-free model as well, cf.
the papers by Hull and White(1990a,1990c) and Jamshidian(1991).

The current section contains a short review of the BDT-model. The section is meant
for reference mainly and no new results will be developed. For an introduction we
refer to the original BDT(1990) paper. Section 3.1.1 presents the general no-arbitrage
condition in a binomial setting. The two most important interest rate models is

17 One-factor models representing the traditional approach can be found in Vasicek(1977),
Dothan(1978) and Cox, Ingersoll and Ross(1985), while Brennan and Schwartz(1979) as well as
Longstaff and Schwartz(1991) are examples of two-factor models.

18 Other examples of arbitrage-free models can be found in Jamshidian(1987), Black, Derman and
Toy (1990), Pedersen, Shiu and Thorlacius (1989), Heath, Jarrow and Morton (1990), Hull and
White(1990a). Hull and White(1990c) introduce a very general trinomial setup, which incorporates
most of the models proposed so far. Jakobsen and Jørgensen(1991) focus on the common structure
of the Ho and Lee and the BDT-model.
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reviewed in section 3.1.2, while 3.1.3 contains a discussion of the estimation of volati-
lities. Section 3.1.4 goes through the numerical calibration procedure. The forward
induction method used in this thesis is rather new and a full exposition is given.

3.1.1 The no-arbitrage condition

The binomial term structure model can be defined as follows. Assume the time scale
(measured in years) to be divided into intervals of lengthdt starting at . At each
periodn (starting at time ) there is a total of different states of the world,
numbered 19. The combination of daten and states is called thedate-event

. In the period following date-event either an ’up-state’ occurs leading to
date-event or a ’down-state’ leading to . denotes the short
rate, defined as the annualized continuously compounded risk free rate of interest at

. The price at date-event of a zero-coupon bond maturing at daten+1 is
denoted by .

Restating the well-known no-arbitrage option valuation argument of Cox, Ross and
Rubinstein(1979) it can be shown that the price, , of any risky asseti at date-
event must apply to the following general backward equation

(3.1)

The backward equation states that the price at date-event (n,s) should be obtained as a
weighted average of up- and down-state prices, discounted by the risk free rate of
interest. To avoid arbitrage possibilities the same weight must be used across
all securities. could be interpreted as the market price of up-state money
at , while is the corresponding price of down-state money. A
security paying 1 unit in both states will have a price equal to the sum of up- and
down-state price that is and an annualized return equal to . In general
these state-prices will depend on the overall risk preferences of the market. Note that
(3.1) is similar to a risk-neutral valuation equation except that the weight has no
direct relation to the objective probability of up-state. In the special case of an

t = 0
t = n ⋅ dt n + 1

s = 0, 1, .., n
(n, s) (n, s)

(n + 1, s + 1) (n + 1, s) r (n, s)

(n, s) (n, s)
p(n, s) ≡ exp(−r (n, s)dt)

Vi(n, s)
(n, s)

Vi(n, s) = p(n, s) {θ(n, s)Vi(n + 1, s + 1) + (1− θ(n, s))Vi(n + 1, s)} .

θ(n, s)
p(n, s)θ(n, s)

(n, s) p(n, s) (1− θ(n, s))

p(n, s) r (n, s)

θ

19 To avoid unnecessary notation the discussion is limited to the binomial model. The notation here is
adapted from Jamshidian(1991). Readers interested in a more general setup, which connects more
readily to continuous time models, are referred to the paper by Jamshidian or Hull and White-
(1990c).
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economy of risk-neutral investors only, the parameter must equal the probabilities of
up- and down-state. The parameter is often referred to as the risk-neutral or
martingale probabilities.

Figure 3.1:
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20 Hull and White(1990a) develop the relationship between the traditional and the arbitrage-free
models in a continuous time setting. The papers by Jensen and Nielsen(1991) and Jakobsen and
Jørgensen(1991,pp.19ff) discuss the same issue in the binomial model.
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The arbitrage-free models always fit the current yield curve. These models start with a
known volatility and an assumed value for and then a drift of the future risk free
interest rate is constructed so that modelled zero-coupon bond prices match the
observed term structure. In the following we use the arbitrage-free approach21.

3.1.2 Examples of arbitrage-free models

In its most general form the backward equation (3.1) introduces two parameters,
and for each date-event . As a typical pricing lattice for callable

mortgage backed bonds may contain say 120 periods leading to
different date-events, some additional structure is needed. In this section we outline
two of the most popular parameterizations.

The generalized Ho and Lee (1986) model (HL) assumes22 a constant value of

and an additive relationship between short rates of different states that is

(3.2)

The parameters needed are now reduced to the constant and two values and

for each periodn.

θ

r (n, s) θ(n, s) (n, s)
121⋅ 122/2 = 7.381

θ(n, s)

a) θ(n, s) ≡ θ

b) r (n, s + 1) = r (n, s) + hn ⇔ r (n, s) = r (n, 0) + s ⋅ hn

θ r (n, 0) hn

21 A full examination of the validity of the arbitrage-free approach could (easily) fill several papers,
but a simple analogy might help.

Arbitrage-free models, like the BDT-model, price assets dependent on the future short-rate relative
to prices of zero coupon bonds in the same way as the Cox-Ross-Rubinstein model prices options
dependent on future stock-prices relative to the current market price of the stock. In both models
an observed volatility, , is transformed into a multiplicative spread by the relationship

. Using this spread a lattice of the underlying risky asset is constructed in
which the ’risk-neutral’ pricing formula (3.1) fits observed market price(s). The constructed lattice
can then be used to price any derivative asset. In none of these models will the true drift of the
underlying asset enter the calculations. Only risk-adjusted up- and down-state prices are needed
and these can be inferred from available market prices.

22 The original article of Ho and Lee(1986) is stated in terms of arbitrage-free shifts in the initial
discount function, but as proved in Jakobsen and Jørgensen(1991) their approach is equivalent to
(3.2). Ho and Lee(1986) used a time independent additive spread. The use of a time dependent
spread is a slight generalisation first proposed by Pedersen, Shiu and Thorlacius(1989).

σ
δ = 2 ⋅ exp(−σ ⋅ √∆t )

ht
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The Black, Derman and Toy(1990) model employs a multiplicative spread between
short rates. Their lattice structure can be stated as

(3.3)

The BDT-model contains the same number of parameters as the HL-model, but some
differences remain. As shown by Jamshidian(1988) the HL-model converges to a
continuous time model with interest rates being normally distributed. There will thus
exist a positive probability of negative interest rates. This applies to the binomial
version as well. The BDT-model converges toward a log-normal distribution for the
short-term interest rate and the probability of negative interest rates is zero. Secondly
the spot-rate variance of the HL-model is state-independent, while the spot-rate
variance of the BDT-model is proportional to the level of the spot-rate. These differ-
ences has lead many researchers and practitioners to prefer the BDT-model. This is the
approach taken in the current thesis as well.

Works by several authors, especially Jamshidian(1987,1988,1990) and Hull and
White(1990a) may change the current trend back toward the HL-model. The HL-
model and its continuous time version is analytically far more tractable than the BDT-
model and closed-formed pricing formulas have been given for a wide range of
derivative assets, even including American options on coupon bearing bonds. The
problem of negative interest rates could be kept at an insignificant level by the intro-
duction of a positive rate of mean reversion. As interest rates of all maturities are
normally distributed the statistical estimation of the model will be well-defined. On the
contrary no closed-form pricing formulas exists for the BDT-model and the statistical
distribution of longer term interest rates is not a simple well-known distribution23.
These features may redefine the mean-reverting HL-model as the standard arbitrage-
free term-structure model, cf. Hull and White(1992).

3.1.3 Specification of interest rate volatility

As shown in Jamshidian(1991) the BDT-model can be viewed as a discretization of the
following continuous time lognormal model.

a) θ(n, s) ≡ θ

b) r (n, s + 1) = δn ⋅ r (n, s) ⇔ r (n, s) = δn
s ⋅ r (n, 0)

23 For a simple proof see the appendix of Jakobsen and Jørgensen(1991).
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(3.4)

where is a Wiener process, with normal distributed increments , denotes a

deterministic time dependent volatility of the future short rate and b(t) is a determini-
stic time dependent drift term determined from the initial term structure.

To freely use the BDT-model for different time-stepsdt, it is necessary to establish the
connection between the volatility and the spread parameter . From date-event
(n,s) the log-rate i.e. the logarithm of the spot rate , may change to either

with martingale "probability" or to with probability
. The variance, , of the log-rate in this binomial process is given by

(3.5)

In the continuous time lognormal model the variance of the log-rate for a small period
is given by . Setting (3.4) equal to (3.5)24 and rearranging gives the

following formula for

(3.6)

The continuous time limit of the generalized Ho-Lee model is given by (cf. Jamshi-
dian(1991))

(3.7)

where the drift term and the volatility of absolute yield changes are time

dependent functions.

By a similar argument the spread-parameter is found by

d(logr ) = [b(t) + log(r )σ’(t)/σ(t)]dt + σ(t)dz

z(t) dz σ(t)

σ(t) δn

r (n, s)
logr (n + 1, s) θ logr (n + 1, s + 1)
1− θ V(t , s)

VAR(n, s) = θ(1− θ) (logr (n + 1, s + 1) − logr (n + 1, s))2 = θ(1− θ) logδn
2 .

σ(t)2 ⋅ dtdt
δn

δn = exp




σ(n ⋅ dt)√dt

√θ(1− θ)





.

dr = [b(t) + r σ’(t)/σ(t)]dt + σ(t)dz

b(t) σ(t)

hn

24 The volatility estimate will typically be based on historical time series using actual probabilities,
while the binomial variance estimate uses risk-neutral probabilities . In the limit this distinction
disappears cf. Madan, Milne and Shefrin(1988) for a discussion.

θ
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(3.8)

cf. Jamshidian.(1990,p.57).

3.1.4 The numerical calibration procedure

The ability to match a specified initial term structure is the distinguishing feature of
arbitrage-free models. The match is accomplished through an adjustment of the
expected drift of future short term rates. For some models, like the Ho and Lee,
explicit formulas can be found which relates expected future short term rates to the
specified initial term structure, but in general a numerical calibration procedure must
be used. This section contains a detailed and notationally simplified exposition of the
forward induction method introduced by Jamshidian(1991)25. The forward induction
approach is compared to the ’naive’ method of backward induction.

In the last section the spread parameters, , were assigned to an exogenous volatility

estimate and and remain as unknown parameters. Unless otherwise stated we
set in the following26.

Let denote the initial term structure of zero coupon bonds. is typically found

by a statistical estimation procedure similar to the one described in chapter 2. For use
in the binomial model is defined as the price at time zero of a zero
coupon bond maturing at periodn. The purpose of the calibration procedure is to
determine the bottom-rates so that modelled prices of an-period zero coupon
bond equals the observed price27.

hn =
σ(n ⋅ dt)√dt

√θ(1− θ)

δn

θ r (n, 0)
θ = 0.5

P(t) P(t)

Pn ≡ P(n ⋅ dt)

r (n, 0)
Pn

25 The numerical procedure given here applies to all arbitrage-free models including the HL-model.
A version of the forward induction method will later be used to calibrate an after-tax lattice to the
after-tax term structure, cf. section 4.3 below.

26 could be assigned other values between 0 and 1 as well, but in the limit pricing results remain the
same. Setting ensures the fastest rate of convergence, cf. Jamshidian (1990, p.57).

27 Note that the bottom-rate determines all short-term rates at daten through the spread

parameter . An increase in will increase for all statess and thus increase the

expectedn-period rate. The calibration could of course be parameterized by say the median rate
instead. Numerical stability depends on the total range of short term rates and the exact choice
does not seem to matter.

θ
θ = 0.5

r (n,0)
δn r (n,0) r (n,s)
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The calibration is done by either backward or forward induction. The backward induc-
tion method is the least involved of the two. Step 1 ( ) obtains the first bottom-rate

from by observing that , which implies that
28.

The general step for chooses to match . Here an iterative procedure

is used29. Assume to be determined for . One starts with a guess
of . This guess determines for alls=0,..,n. The cash flow at timen+1 of
the -period zero-coupon bond can now be discounted back to time zero using the
backward equation (3.1) at each date-event. By comparing the resulting price to the
observed price one obtains an improved guess. The process is iterated until a
value of is reached, at which the calculated price equals the observed price30.
Then the whole procedure moves to periodn+1.

The backward induction method quickly calls for a faster computer. For each of the
values one needs several passes back through the entire lattice. The number of
nodes is proportional to . The total computation time needed for aN-period lattice is
thus proportional to .

The forward induction method introduced by Jamshidian(1991) is an ingenious sol-
ution procedure, which speeds up calculations dramatically. The method uses the
theoretical concept of an Arrow-Debreu security. Let , denote the price at time
zero of the -Arrow-Debreu security, defined as a security with a cash flow of
unity at date-event and zero elsewhere. In the binomial model any security with a
time- and state-dependent cash flow could be viewed as a portfolio of AD-securities in
the same way as fixed-payment bonds are portfolios of zero-coupon bonds.

The concept of AD-prices was touched above when noted that equals the

market price of up-state money and the price of down-state money.

n = 0
r (0, 0) P1 P1 = p(0, 0) = exp(−r (0, 0)dt)
r (0, 0) = − ln(P1)/dt

n > 0 r (n, 0) Pn + 1

r (k, 0) k = 0, 1, ..n − 1
r (n, 0) p(n, s)
n + 1

Pn + 1

r (n, 0)

r (n, 0)
n2

N3

G(n, s)
(n, s)

(n, s)

θ ⋅ p(0, 0)
(1− θ) ⋅ p(0, 0)

28 As mentioned above denotes annualized continuously compounded interest rates. Our com-
puter implementation uses non-annualized rates with simple compounding, i.e.

, to increase efficiency.
29 As an exception could be solved for analytically.
30 The derivative with respect to can be calculated, which enables the use of a Newton-Raph-

son procedure.

r (n,s)
r̃ (n,s)

p(n,s) = 1/(1 + r̃ (n,s))
r (1,0)

r (n,0)
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Figure 3.2: The value of an

(n+1,s)-AD-security

( ).

Extending this argument figure (3.2) shows the value in periodn of an -AD
security. In periodn the security is worth in states-1, in
states and the value is zero elsewhere.

As a simple consequence one gets the so-called forward equation:

(3.9)

The interpretation of (3.9) should be straightforward from figure 3.2. The value at time
zero of an (n+1,s)-AD-security is equal to its value in periodn times the respective
AD-prices in periodn. The equation works for the boundary states as well, if we define

and .

The first step ( ) of the Jamshidian forward induction method calculates to

match . This is done directly as shown above. The AD-prices at time 1 is calculated
as and . The general step determines
for to match . On outset alln-period AD-prices, are assumed to be
known from the previous step. To connect AD-prices with zero-coupon prices note
that the price at time zero of an -period zero coupon bond can be expressed as a
sum of AD-prices

(3.10)

1

0

0

0

State

s+1

s

s-1

s-2

Period n n+1

q·p(n,s-1)

(1-q)·p(n,s)

0

0
q ≡ θ

(n + 1, s)
θ ⋅ p(n, s − 1) (1− θ)p(n, s)

G(n + 1, s) = (1− θ)p(n, s)G(n, s) + θ ⋅ p(n, s − 1)G(n, s − 1)

G(n, −1) ≡ G(n, n + 1) ≡ 0 p(n, −1) ≡ p(n, n + 1) ≡ 0

n = 0 r (0, 0)
P1

G(1, 0) = (1− θ)p(0, 0) G(1, 1) = θ ⋅ p(0, 0) r (n, 0)
n > 0 Pn + 1 G(n, s)

n + 1

Pn + 1 = ∑
s = 0

n + 1

G(n + 1, s)
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Using the forward equation (3.9) is expressed by the sum of known values

multiplied by :

(3.11)

Relation (3.11) is an equation with one unknown variable, . Each choice of

determines the vector of one-period discount factors and the r.h.s. value
can be compared to the observed zero-coupon price . The equation is easily solved
in 2-4 iterations by a Newton-Raphson procedure.

To summarize the forward induction method starts at time 0 by determining and

then progresses forward in the lattice. In stepn the bottom-rate is solved for
numerically by use of (3.11) and is then determined for alls by the forward
equation (3.9). The advantage of the forward induction method is that each iteration of
equation (3.11) involves only values at timen as compared to the backward induction
method in which a single iteration needs a recalculation of the entire lattice. Computa-
tion time used to solve forN different time periods is therefore proportional to as
compared to for the backward induction method. One could say thatn-period
AD-prices is a sufficient statistic for the entire lattice structure between time 0 andn.

For good reasons the forward induction method has been used throughout this thesis.
One of our earlier implementations of the BDT-model used backward induction. In its
most optimized version with explicit derivatives, a Newton-Raphson search-procedure,
simple compounding, ’smart’ initial guesses etc., a 120 period lattice could be calcu-
lated in a few minutes31. The corresponding 360 period lattice took hours. A simple
change to the Jamshidian(1991) forward induction method reduced computation time
to 4 seconds for a 120 period lattice, while a 360 period lattice is done in 20 seconds.
For the simulations done in this thesis forward induction has probably saved several
months of effective computer time.

Pn + 1 G(n, s)
p(n, s)

Pn + 1 = ∑
s = 0

n

p(n, s)G(n, s)

r (n, 0)
r (n, 0) p(n, s)

Pn + 1

r (0, 0)
r (n, 0)

G(n + 1, s)

N2

N3

31  Calculations was done on a 20 MHz 386 PC with a mathematical coprocessor. A state-of-the-art
PC/workstation might improve computation times by a factor of 10, but even that would become
slow.
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3.2  Pricing techniques

Explicit pricing formulas have been developed for some combinations of assets and
interest rate processes. In the absense of explicit solutions one must resort to an
approximative valuation using the binomial arbitrage-free lattice constructed in the
previous section. The current section shows how the lattice can be used to value
fixed-payment bonds, options on bonds and bonds with embedded options. The section
ends with a short discussion of path-dependency.

A fixed-payment bondcan be described as a vector of settlement dates,
measured in years32 with a corresponding vector of cash flows .

denotes the value of the bond at date-event . The value at maturity,
, is found as for all states . At any daten before

maturity, the general recursive relationship

(3.12)

can be used, where equals the payment, , ifn corresponds to a settlement date ,

i.e. for somei. If n is not a settlement date . Applying (3.12) from
date to zero returns the bond value at time zero.

The use of a lattice to price a fixed-payment bond at time zero is of course computa-
tional inefficient, since the value could be found from the initial term structure by

(3.13)

The arbitrage-free approach ensures that the two methods give the same result.

Consider now the value, , of a European option on a fixed-payment bond. The

option matures at timeT corresponding to trading date . To price the option
one starts at the bonds maturity and uses the backwards equation (3.12) to get the

{ti}, i = 1, .., M {bi}
B(n, s) (n, s)
nM = tM/dt B(nM, s) = bM s = 0, 1, .., nM

B(n, s) = F(n) +
1
2

p(n, s) {B(n + 1, s + 1) + B(n + 1, s)}   for s = 0, 1, ..n

F(n) bi ti

n = ti /dt F(n) = 0
nM − 1

B = ∑
i = 1

M

biP(ti) .

C(n, s)
nT = T/dt

nM

32 In practice the payments may be due between the discrete trading dates of the binomial lattice, and
some interpolation must be used, cf. section 3.3.



  3.2   Pricing techniques 39

value of the bond, , at for all statess. The contract features of the option
translate the bond value into option values, , and finally the backward equation
is used to discount these terminal option values back to date-event (0,0)33.

The case of an American option on a fixed-payment bond is handled with little extra
work. Let , which is a function of , denote theexercise valueof the
option34. Thehold-onvalue, , is defined as the value of the option, if it is not
exercised at date-event (n,s). By the standard value-maximizing argument, the value of
the option is found by

(3.14)

The pricing procedure first discounts the fixed-payment bond from to . Option

calculations start at with . Each stepn, , calculates
by (3.12). The exercise value is found from the bond value and the hold-on

value is given by . Finally relation

(3.14) is used to get the option value .

Bonds with embedded American or European options, like callable corporate bonds,
could be priced directly or as a portfolio of a fixed payment bond and an option. Let
the cash flow, , from the underlying non-callable bond be defined as above. The
direct approach denotes the value of the callable bond by , the redemption
value, i.e. the value if the option is exercised, as and the hold-on value by

. Pricing starts at bond-maturity setting . At any date-eventn,

, we have . Ifn is a

decision date for the bond issuer, equals the contracted strike price plus the
cash flow . The value of the callable bond can be found by

B(nT, s) nT

C(nT, s)

C*(n, s) B(n, s)
C+(n, s)

C(n, s) = max{C*(n, s), C+(n, s)}

nM nT + 1

nT C(nT + 1, s) = 0 0≤ n ≤ nT B(n, s)
C*(n, s)

C+(n, s) ≡ 1

2
p(n, s) {C(n + 1, s + 1) + C(n + 1, s)}

C(n, s)

F(n)
V(n, s)

V*(n, s)
V+(n, s) nM V(nM, s) = bM

V+(n, s) = F(n) + 1

2
p(n, s) {V(n + 1, s + 1) + V(n + 1, s)}0 ≤ n < nM

V*(n, s)
F(n)

33 This is the procedure required by the BDT-model. For models of the Ho and Lee type with
normally distributed interest rates could be calculated by explicit formulas. This would

increase efficiency by allowing the lattice to stop at instead of . Explicit formulas for

European options of fixed-payment bonds exist as shown by Jamshidian(1989).
34 For call options , while for a put, where

denotes the possible time- and state-dependent strike price. In practice the calculation of
must take care of details like accrued interest, remaining face value of the underlying bond etc.

B(nT,s)
nT nM

C*(n,s) = B(n,s) − X(n,s) C*(n,s) = X(n,s) − B(n,s)
C*X(n,s)
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. If n is not a decision date equals . A
putable bond is handled similarly except that , if the
put option can be exercised at timen.

The portfolio approach prices the option separately as discussed above. At time zero
the embedded bond value is found as in case of a callable bond while
equals for a putable bond.

The cash flows of all assets discussed above did not depend on the history of interest
rates leading to date-event (n,s). This allowed the use of a very efficient backward
pricing algorithm. For some assets the cash-flow depends on the entire history of
interest rates. For thesepath-dependent securitiesa different pricing procedure is
needed.

Consider for example an adjustable rate bond, in which the coupon rate is fixed for 3
months at a size determined as an average of earlier short term rates. The value of this
bond cannot be determined from the current term structure because the future coupon
rates depends on future short term rates. The backwards pricing procedure does not
work either, because the size of the coupon rate is unknown when discounting needs to
be done. Derivative securities like caps give rise to a similar problem.

Callable mortgage backed bonds (MBBs) is a more complicated example cf. the dis-
cussion in the next section. The cash flow from a MBB depends on borrowers prepay-
ment behaviour and in general this behaviour is partly determined by the history of
interest rates.

From the theoretical point of view path-dependent pricing is easy. One picks a path, S,
of short term rates, calculates the corresponding cash flow and discount it by the
short-term rates. This price, , constitutes the value of the security conditioned on
interest rates evolving along S. The price at time zero is the obtained as a simple
average across all available paths, i.e. .

As an unpleasant property of path-dependency the number of paths, , equals ,

whereN is the number of periods in the lattice. With lattices of more than say 15
periods the computations become prohibitive. One must therefore resort to Monte-
Carlo techniques (MCT). Instead of averaging across all paths one averages across a

V(n, s) = min{V*(n, s), V+(n, s)} V(n, s) V+(n, s)
V(n, s) = max{V*(n, s), V+(n, s)}

V = B − C V
B + C

VS

V = ∑SVS/NS

2NNS
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randomly selected sample of paths. MCT therefore introduces a modelling error of its
own, because the calculated price varies with the chosen sample. Selecting a larger
sample decreases sample variance, but only very slowly35.

Monte-Carlo techniques may be the only solution available for the valuation of certain
types of securities, but algorithms tend to be complicated drawing heavily on inter-
mediate storage and computer time. MCT’s are furthermore restricted to European
style options. The MBB-pricing models of this thesis are based on American-style
option arguments and Monte-Carlo techniques will not be used. This is in contrast to
most US-models, cf. the discussion of chapter 7.

To summarize we have shown how certain types of securities could be valued in a
one-factor binomial lattice model. We have focused on some of the most important
examples, but the arbitrage-free models could be extended to almost any kind of
interest-rate dependent security. Of special interest for the current thesis is the callable
mortgage backed bond, which will be analysed in the next section.

3.3  A MBB pricing model

This section introduces a pricing model for Danish mortgage backed bonds (MBBs).
The price depends on the so-called prepayment function, which specifies the rate of
prepayments as a function of time, the term structure and the characteristics of the
mortgage pool in question. By changing the specification of the prepayment function
several interesting models can be studied. This will be the subject of later chapters.

3.3.1 Description of the MBBs

As shown in section 2.2 more than 60% of the Danish bond market consists of fixed-
coupon, callable mortgage backed bonds. MBBs are issued by mortgage credit institu-
tions and each bond is backed by thousands of individual mortgages. Due to strict
governmental regulation, joint and several liability and the use of real estate as
collateral the default risk is insignificant. MBBs are so-called pass-through securities
in that all payments from the individual mortgages are passed directly to the bond-

35 To avoid choosing too large a sample variance reduction techniques can be used cf.
Hull(1989,sec.9.1). Cheyette(1992) contains a very interesting discussion of Monte-Carlo tech-
niques in the context of mortgage-backed bonds.
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holders less a small administrative fee. Individual mortgages are highly standardized
with coupon rate, settlement dates, amortization schedule and time to maturity being
common to all mortgages in a single pool36.

Most current MBBs are issued as either annuity or serial loans with quarterly pay-
ments. Before 1986 MBBs were issued as annuities with semi-annual payments.
Nearly all mortgages are issued with either 20 or 30 years to maturity having coupon
rates between 8 and 12%.

The complexity of MBB pricing stems from the prepayment option, which allow
borrowers to prepay their loan at any time during the life of the mortgage. Prepay-
ments are mainly driven by economic incentives, with prepayment rates being high
when market rates are low. But compared to the callable bond analysed above one
cannot rely entirely on rational behaviour. Prepayments can be driven by other factors
like myopic liquidity concerns and real estate turn-over rates. Furthermore borrowers
are heterogeneous differing in loan sizes, prepayment costs, tax-rates, available infor-
mation and computational ability. These factors are captured in theprepayment func-
tion. In this section we present the prepayment function as a black-box model. The
following chapters analyses various specifications.

An investor, who buys a mortgage backed bond, has in fact bought a share in a pool of
individual mortgages. At each future settlement date the cash flow from his bond is
equal to the total value of payments from the borrowers multiplied by his share of the
remaining principal37. Ignoring minor differences in the pay-out ratios to each investor
due to the amortization being done by lottery the future cash flow will be proportional
to the initial principal.

The following notation is used to describe the callable mortgage backed bond. Let
be an index into the fixed set of settlement dates . We assume that

each date is measured as the number of years from time . is the vector of
k = 1, …, M {tk}

t = 0 f = {fk}

36 Time to maturity may vary somewhat in a single pool as the loans are issued over a period of 1-3
years.

37 When the amortization is done by lottery there will of course be some uncertainty as to the exact
share allocated to each investor. Because the lot size is small (DKK 1000) compared to the
holdings of most professional investors this uncertainty will however be negligible.
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repayments on the principal assuming no prepayments. The vector gives the
corresponding interest payments. The vector of principal remaining at time is
denoted , with . Repayments are normed so that

Consider a short period of time fromt to . In each such period an individual

mortgage holder has the opportunity to either prepay or continue his loan. If a mort-
gagor decides to pay off his loan prior to maturity the remaining face value will be
passed through to the investors at the earliest possible term date38. Let be the
latest point in time where a decision to prepay the loan will result in the prepayment of
face value at datek. We shall refer to as the decision dates. The difference
between and is calledthe term of noticefor termdatek. A decision to prepay at
time t will become effective at the termdate defined by

(3.15)

At each termdatek in the interval from the prepayment decision up to and including
termdate the debtor will continue to pay the expected cash flow of .

Let denote the value of the MBB assuming that all remaining debtors decide to

prepay their loan at time t. In this case the cash flow from the MBB would be
non-stochastic and can be calculated directly from the term structure at time t, i.e.

(3.16)

with defined as the price at timet of a year zero coupon bond. Likewise

we define as the value at timet of the mortgage if no prepayment occurs in the
period fromt to . depends on the future stochastic prepayment behaviour
of the remaining debtors.

Finally define the prepayment function as the fraction of the debtors, measured

in terms of face value, who prepay their mortgages in the period from timet to time
t+h. The remaining fraction of the debtors continues to the next period.

c = {ck}
tk

g = {gk} gk = ∑j > k fj ∑ fk = g0 = 1

t + h

νk ≤ tk

gk νk

tk νk

κ(t)

κ(t) ≡ min{k | (t ≤ νk) ∨ (k = M)}

κ(t) ck + fk

W(t)

W(t)

W(t) = ∑
k ≤ κ(t)

P(t , tk) ⋅ (fk + ck) + P(t , tκ(t)) ⋅ gκ(t)

P(t , T) T − t

V+(t , h)
V+(t , h)t + h

λ(t , h)

(1− λ(t , h))

38 The lag between the prepayment decision and the time at which the investors receive the cash flow
varies from 2 to 11 months.
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The value of the mortgage at time t can thus be calculated as a portfolio of prepaying
and non-prepaying mortgages:

(3.17)

To close the model we need a specification of the prepayment function as well as a
stochastic pricing model.

3.3.2 The stochastic pricing model

Different term structure models have been employed for the valuation of mortgage
backed bonds. Christensen (1985) uses the continuous one factor CIR-model in an
extensive analysis of Danish MBBs, while the two-factor model by Brennan and
Schwartz (1979) has been used by Schwartz and Tourus(1989) as well as McConnell
and Singh (1991) in their analysis of US mortgage-backed securities. In this thesis we
will use a binomial arbitrage-free model, as discussed in section 3.1. The solution
procedure for a path-independent specification of is given below.

Rewriting the MBB-pricing model into a binomial lattice framework is straightfor-
ward. To avoid unnecessary notation we put . The settlement dates
will in general occur between the discrete trading pointsn used in the binomial pricing
model. To account for this, payments are discounted back to the nearest trading point
with discounting done at the state-dependent risk free rate of interest. As an example
consider the following mapping, which converts the vector of repayments on principal
into a cash-flow at each date-event :

(3.18)

Discounting could of course be omitted provided the time stepdt is sufficiently
small39. The interest payment at date-event is defined similarly to (3.18).

V(t) = λ(t , h)W(t) + (1− λ(t , h))V+(t)

λ

θ(n, s) = θ = 0.5 tk

f(n, s) (n, s)

f(n, s) =




fk ⋅ exp(−r (n, s) (tk/dt − n))    if  dt ⋅ n ≤ tk ≤ dt ⋅ (n + 1)
0 otherwise

c(n, s) (n, s)

39 This way of interpolating the value of intermediate cash flows introduce state dependency into the
otherwise state independent cash flow from the bond. Depending on implementation this increases
computation times.
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In the binomial model we define to be the fraction of the mortgages prepay-

ing on date-event dependent on a vector of parameters . Using this notation the
value, , of the MBB can be written as:

(3.19)

where is given by the formula

(3.20)

Denoting the last date of the bond as the boundary condition becomes

(3.21)

The value in case of prepayment, can be found as

(3.22)

At the boundary we set equal to interest plus remaining face value

(3.23)

denotes the settlement date, at which the prepayment at timen becomes effective.

Note that the boundary date changes, as we move backward in the lattice, and that
calculations of may overlap due to the term of notice.

If is path-independent we can calculate together with (overlapping)

values of in a single backward pass.

The relative simplicity of this model depends heavily on the assumption of path-inde-
pendency of the prepayment function . In case of path-dependency in the
parameter vector a different procedure must be used. The best approach would
probably be to move the specification of from the decision date to the settlement
date, and let depend on lagged values of interest rates. Some simple forms of path

λ(n, s, α)
(n, s) α

V(n, s)

V(n, s, α) = λ(n, s, α)W(n, s) + (1− λ(n, s, α))V+(n, s, α)

V+(n, s, α)

V+(n, s, α) = f(n, s) + c(n, s) +
1
2

p(n, s) {V(n + 1, s + 1, α) + V(n + 1, s, α)}

nM = int tM/dt

V+(nM, s, α) ≡ 0    for s = 0, …, nM

W(n, s)

W(n, s) = f(n, s) + c(n, s) +
1
2

p(n, s) {W(n + 1, s + 1) + W(n + 1, s)}

W(n, s)

W(κ(n), s) = g(κ(n), s) + c(κ(n), s)
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α

λ
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dependencies may be handled by a variant of the forward induction method40, while
more complicated types of path dependencies require the use of Monte Carlo tech-
niques, cf. chapter 7.

3.4  Summary

We have reviewed the arbitrage-free term structure models with special reference to
the model proposed by Black, Derman and Toy(1990), and shown how certain interest
rate dependent securities can be priced in a binomial lattice framework. Section 3.3
developed a MBB pricing model in which the prepayment function summarizes the
behaviour of the individual mortgage holders. In chapter 5-7 it will be shown, how
different models arise from different assumptions on the prepayment function.

40 This will be the subject of a forthcoming paper.
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4 Arbitrage-Free Models with Taxation.

While the construction of an arbitrage-free lattice in a pre-tax setting is fairly standard
and widely accepted, there exists to our knowledge no common way in which a pre-tax
arbitrage-free model is extended into a model which allows for different tax schemes
for different groups of investors. As discussed in later chapters this diversity of tax-
schemes is nevertheless an empirical fact having a profound effect on the valuation of
mortgage backed bonds.

In the current section we discuss this extension of the arbitrage-free lattice model.
Section 4.1 reviews work by several authors showing that no bond market equilibrium
exists with differential taxation unless some kinds of institutional restrictions are
accepted. Section 4.2 discusses the valuation of fixed-payment after-tax cash flows.
An institutional environment is proposed in which bonds are divided into three groups
according to coupon rate and date of issue. In this environment a unique after-tax term
structure will exist, which is used by private investors to value any type of fixed-pay-
ment cash-flow. In section 4.3 we show how to construct an arbitrage free lattice
model, which matches the initial after-tax term structure as well as the pre-tax one.
This model will be used in the remaining chapters for the after-tax calculations of
options.

4.1  Differential taxation and no-arbitrage equilibrium

In the following analysis of tax systems in the Danish bond market investors are
divided into two groups. The first group called the private investors are taxable of
coupon income, but not of capital gains, while the second group - the institutional
investors - are taxed of capital gains and coupon payments at the same rate.

Private investors include all households while the institutional investors consist of
banks, public institutions, insurance companies, pension funds etc. The classification
of corporations depends on the date of issue of their bonds. For bonds issued before
1991 the firms are taxed as private investors, while they belong to the institutional
investors regarding any issue from 1991.

Using a single-period model Shaefer(1982) shows that the existence of different tax
schemes opens arbitrage opportunities in a bond market. Consider for example two
one-period bonds with coupon rates of 6% or 10% respectively, and let the tax rate for
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private investors be 50%. Irrespective of the before and after tax interest rates the
institutional investors will accept relative prices of 106/110 while private investors set
relative prices of 103/105. This opens a risk free arbitrage possibility, in which private
investors could gain by issuing high coupon bonds using the proceeds to invest in low
coupon bonds. Institutional investors would conversely sell low coupon bonds and
invest in high coupon issues. The process would continue until net taxable income
from the private investors became zero. Only by the introduction of short sale restric-
tions will the market reach a stable equilibrium.

Raaballe and Toft(1990) extend the analysis of Schaefer to a multi-period model. The
one-period assumption of two bonds with different coupon rates is substituted by the
so-calleddouble spanning condition(DSC). In their first model trading only occurs at
time zero, and the DSC requires that two bonds with different coupon rates exist at
time zero for each maturity. A second model allows trading at each future date-event
and the model becomes a series of one-period models, in which the DSC requires that
two one-period bonds with different coupon exists at the start of each future date-
event. Assuming a bond market no-arbitrage equilibrium with no restrictions on short
sale, Raaballe and Toft show that any investor uses the same marginal tax rate for
capital gains as well as coupon payments. The marginal tax rate may differ between
different investors. For private investors the tax rate is zero, reflecting the fact that any
taxable income at any future date could be removed by bond arbitrage between private
and institutional investors.

The logic behind the models by Raaballe and Toft can be illustrated by a simple
example. Consider a private investor who at the start of some future year learns that
his taxable income will be DKK 200.000 and his tax rate 60%. To avoid paying DKK
120.000 in taxes he routinely acquires a DKK 11,000,000 loan from his bank (an
institutional investor) at the one-period market rate of 12%. The proceeds are invested
in nominal DKK 11,200,00 10% bonds. At the end of the year his 10% bonds are
worth DKK 12,320,000 which exactly matches the amount due on his loan. The
transaction will be entirely risk free for the institutional investor if the bonds are
placed as collateral. The investor has paid interest of DKK 1,320,000 and received
interest of DKK 1,120,000 plus a tax-free capital gain of 200,000. Deducting the net
interest payments of DKK 200,000 leaves his total taxable income at zero. Knowing
this to be possible at any future date he considers his marginal tax rate to be zero.
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The models by Shaefer(1982) and Raaballe and Toft (1990) show how difficult it is to
combine differential taxation with rational behaviour. Taken for granted the Raaballe
and Toft model simply states that differential taxation cannot exist.

It would be tempting to accept their argument and continue using pre-tax valuations
for all kinds of investors, but differential tax schemes is nevertheless an empirical
reality. The mere fact that private households in Denmark contributed 206 billion
DKK in 1990 in direct taxes which amount to 25.5% of total GDP indicates that there
is room for some modifications of the model.

The most important modification is the so-calledminimum interest rulewhich is in
fact a maximum rule as well. This rule basicly forbids credit institutions to issue loans
above par while any capital gain from bonds issued with coupon rates below the
minimum interest rate will be fully taxed even for private investors. The minimum
interest is continuously adjusted to keep newly issued bonds close to par. The mini-
mum interest rule effectively reduces the range of available coupon rates.

For small differences in coupon rates a large volume of transactions is needed to
obtain a specific tax-advantage. The private investors therefore incur increased trans-
action costs, which reduces the gains from arbitrage.

The minimum interest rule can be viewed as a short sale restriction of bonds issued
above par contrary to the assumption of unrestricted short sales used in the model of
Raaballe and Toft.

The minimum interest rule only applies to new bond issues. Private investors still has
the opportunity of investing in earlier issued lower coupon bonds. Because most bonds
are issued with coupons at or above current market rates lower coupon bonds are
however in limited supply and they are easily absorbed by private investors41. As
shown in Shaefer(1982) this leads to a segmented bond market, in which the prices of
low coupon bonds are set by private investors based on their after tax cash flow, while
bonds at or above the minimum rate are priced by institutional investors.

41 This could change, if interest rates rise above say 11%, which would leave an outstanding volume
of nominal DKK 1000 billion low coupon bonds readily available for tax arbitrage. However, a
temporary restriction on close-circuit loan arrangements has recently been put forward by the
Danish Government.
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To conclude the discussion of tax arbitrage we still feel a need for an inclusion of
differential taxation in the bond pricing model. Tax arbitrage possibilities do exist but
the institutional restrictions limit their availability, which explains why the majority of
private investors probably use a myopic approach, valuing tax advantages only when
they occur in a natural setting like mortgage finance. To reflect this view in the model
our next section will clarify and strengthen the institutional restriction needed.

4.2  Pricing fixed-payment after-tax cash flows

An important application for after-tax discounting is the analysis of private mortgage
prepayment, in which the old loans after-tax cash flow is compared to the after-tax
cash flow of a new loan. In the current section we shall discuss after-tax valuation
assuming cash-flows to be non-callable.

The pricing of non-callable after-tax cash flows can be done by a yield to maturity
approach or by the introduction of an after-tax term structure. In the following
denotes the tax rate on interest income. In the examples we assume a tax rate of 50%.

The after-tax yield to maturity approach is by far the most popular method, used in
almost all counselling on private mortgage prepayment. In this method the after-tax
value is found by discounting after-tax cash flows by the after-tax yield to maturity of
a new loan. If the new loan is issued at par with annual interest payments, the after tax
yield can be found as , wherey denotes the pre-tax yield. If the new
loan is issued at prices away from par, a numerical procedure is needed to solve for the
after-tax yield to maturity42.

The after-tax yield to maturity may be well suited in a highly regulated mortgage
credit market, in which the pay schedules of the new loan is well defined. However,

τ

yτ yτ = (1− τ) ⋅ y

42 The conventional approach, used throughout this paper, assumes tax payments to occur at the
settlement dates for interest payments. A 12% par loan with quarterly payments will thus have a
pre-tax yield to maturity of 12.55%, while the after tax yield is . A
similar loan with an annual coupon of 12.55% would likewise be priced at par but now the after
tax yield is 6.27%. As most households pay and deduct taxes independent of the exact timing of
interest payments this implies a rather arbitrary distinction between loans with 1, 2 or 4 settlement
dates per year. A more uniform but also more complicated approach would be to modify the
pre-tax cash flow according to the settlement dates for tax payments.

(1 + (1 − 0.5) ⋅ 0.03)4 − 1 = 6,14%
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with the current trend towards deregulation in the Danish mortgage market, borrowers
have access to loans of different maturities, and we shall therefore use an after-tax
term structure approach similar to the pre-tax model.

From the discussion of tax-arbitrage possibilities in the previous section it is evident
that some very specific assumptions concerning the institutional environment are
needed. We assume a strict version of the minimum interest rule. At any date the
government divides new bond issues into A- and B-bonds43. A-bonds exists for all
maturities, but only one coupon rate and one loan type is allowed for each maturity.
All other bond issues are labeled B-Bonds. Private investors can issue and purchase
A-bonds of any maturity being taxed of coupon payments only. Private investors are
not allowed to issue B-bonds and capital gains on B-bonds are fully taxed even for
private investors. Capital losses on B-bonds are not tax-deductable. A third group
labelled C-bonds consists of earlier issued A-bonds. Capital gains on C-bonds are
tax-exempt, but the outstanding volume of these bonds is assumed to be small com-
pared with total taxable income from private investors. To simplify computations it is
finally assumed that A-bonds are issued as ordinary loans, although it would be simple
to use annuities or serial bonds instead.

The institutional investors are free to issue and invest in A-bonds as well as B-bonds.
We finally assume that all investors only considers the tax arbitrage possibilities at
time zero.

A formal analysis of the equilibrium properties of this model would be highly appro-
priate, but is outside the scope of the current thesis. The following discussion should
therefore be seen as a preliminary conjecture on the properties of a no-arbitrage
equilibrium.

As private investors have no short sale restrictions on A-bonds and institutional
investors have no restrictions on either A- or B-bonds then the no-arbitrage condition
implies that prices of these bonds are set according to a pre-tax bond arbitrage equilib-
rium that is

43 A similar distinction exists in the Danish minimum interest rate law discussed above. The law
refers to A-bonds as ’blue-stamped’, while B-bonds are ’black-stamped’. These terms are inherited
from the agricultural sector referring to either excellent or average quality of Danish bacon.
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(4.1)

where denotes the pre-tax discount factors while denotes repayments on principal

and coupon payments on the bond.

Let be the coupon rate of an ordinary A-bond maturing in periodn having a face

value of DKK 1. The price is given by

(4.2)

The precise structure of A-coupon rates is not crucial for the model, but for complete-
ness one could assume A-bonds to be issued at par, i.e. , which leads to the
following recursive expression for the term structure of A-bond coupon rates:

(4.3)

The private investors price A-bonds according to the after-tax cash-flow, i.e.

(4.4)

where denotes the after tax discount factor for time t. With no short-sale restrictions

on A-bonds, , and can be found by:

(4.5)

The after-tax discount factors are uniquely determined by the allowed refinancing
alternative and they reflect the relative weight of interest payments in the bonds as
well as the current shape of the term structure.

To argue that a bond market equilibrium exists, it is necessary to go through the
different possibilities.

P = ∑
t = 1

M

dt ⋅ (ft + ct)

dt ft

ct

cn

Pn = cn ∑
t = 1

n

dt + dn

Pn ≡ 1

cn = (1− dn)/ ∑
t = 1

n

dt

Pn
τ = (1− τ)cn ∑

t = 1

n

dt
τ + dn

τ

dt
τ

Pn
τ = Pn dt

τ

dn
τ =

Pn − (1− τ)cn ∑t = 1
n − 1 dt

τ

1+ (1− τ)cn

  for n = 1, 2, ..
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By trading in newly issued A-bonds the private investors are able to replicate any
after-tax cash flow from a C-bond i.e. an earlier issued A-bond. The value of a C-bond
for private investors are given by

(4.6)

This after-tax value will in general differ from the pre-tax value given by relation
(4.1). For greater than the pre-tax value the bond will be held by private investors
and its market price will be equal to . In equilibrium the short-sale restriction for
private investors will be binding for these bonds. If is less than the pre-tax value ,
the bond will be held by institutional investors. Trading continues until all low coupon
C-bonds ( ) are held by private investors while the corresponding high coupon
bonds ( ) are held by institutional investors44.

Consider now the private investors valuation of B-bonds. If the coupon rate on a
B-bond is above the current A-bond rate, then the after-tax value will be below the
pre-tax value, which means that the bond should be held by institutional investors. If
the coupon rate on the B-bond is below current A-bond rates, then capital gains are
fully taxed for private investors. This means that the after-tax value is either less than
or equal to the pre-tax value depending on wether current A-bonds contain any tax
exempt capital gain. Either way the B-bonds are unattractive for private investors,
while the short sale restriction prohibits any tax arbitrage. B-bonds are thus held and
priced by institutional investors alone.

The ABC-model can be seen as full term structure version of the well-known after-tax
yield to maturity approach. The after-tax yield to maturity of the new loan is used,
because it represents the allowed refinancing alternative for a private investor, i.e. the
A-bond. Pricing an earlier issued higher-coupon mortgage with the after-tax yield on
the new loan reveals that the mortgage holder has a tax-advantage, compared to the

Pτ = ∑
t

dt
τ(ft + (1− τ)ct)

Pτ P
Pτ

Pτ P

Pτ > P
Pτ < P

44 The structure of bond market prices becomes less clear-cut, if the recent temporary restriction of
close-circuit loan arrangements mentioned above is included in the model. With short-sale restric-
tions even on A-bonds, no uniquely determined after-tax term structure exists in general and
private investors may no longer be able to absorb the outstanding volume of lower coupon
C-bonds. A linear programming approach like the one in Schaefer(1982) might be used instead,
but this must await further research.
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refinancing alternative45. If private investors could freely issue new higher-coupon
loans this tax-advantage would disappear, but so would the bond market no-arbitrage
equilibrium.

The ABC-model may also be compared with the model by Raaballe and Toft(1990).
The double spanning condition is fulfilled in our model, because a whole range of
C-bonds with different coupon rates exist in the market. There exist nevertheless a
no-arbitrage equilibrium with differential taxation because the supply of earlier bond
issues is restricted. In the Raaballe and Toft model private investor could freely choose
a position with deductable interest payments being matched by non-taxable capital
gains. This is not possible in the ABC-model, because unlimited short-sale applies to
only one coupon rate and one bond type for each maturity. Purist could say that private
investors face an incomplete market, because coupon payments cannot be disentangled
and traded separately, but the Minister of Finance is probably happy with the arrange-
ment above.

While the present model sets up a viable bond market no-arbitrage equilibrium with
differential taxation it is evident that small changes in the assumption could offset the
equilibrium. Allowing even a narrow range of A-bond coupon rates for the same
maturities will bring up the situation described by Raaballe and Toft (1990) in which
private investors face an effective tax rate of zero. If market rates increase, then the
supply of earlier issued lower coupon A-bonds increases, and arbitrage arrangements
may no longer be in short supply relative to taxable income for private investors.
Finally we have assumed that investors considers only tax arbitrage possibilities at
time zero.

4.3  A stochastic after-tax model

In the previous section we modelled an arbitrage-free after-tax bond market equilib-
rium with private as well as institutional investors. To avoid tax-arbitrage a number of
restrictive assumptions was made. Private investors were only allowed to issue
A-bonds, capital gain from B-bonds were fully taxed even for private investors, the
supply of C-bond was limited and all parties implicitly followed a buy-and-hold stra-
tegy considering only tax arbitrage possibilities at time zero. Finally all bonds were
assumed to be non-callable.

45 As shown in chapter 5 this tax-advantage may reduce the borrowers gain from prepayment.
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In this section the model is extended to allow for the simultaneous valuation of
state-dependent pre-tax and after-tax cash flows. The model will later be used for the
analysis of the prepayment option embedded in callable mortgage backed bonds, but a
similar model would be needed for the analysis of all kinds of interest rate options
traded in markets with differential taxation.

In Christensen (1985) a model for the valuation of callable mortgage backed bonds is
studied, in which the bonds are issued by private investors and bought by institutional
investors. He uses the one factor continuous time stochastic model developed in Cox,
Ingersoll and Ross(1985), but the main assumptions concerning after-tax valuation can
be translated to the binomial arbitrage-free model used in the present paper.

Christensen assumes a pre-tax arbitrage-free bond equilibrium. In the present context
this corresponds to the binomial arbitrage-free model described in section 3.1. The
callable mortgage held by the private investor is divided into a non-callable mortgage
plus a prepayment option allowing the private investor to buy back his non-callable
loan at face value. The after-tax value of this option is determined by the following
procedure:

At each date-event the pre-tax model is used to find the pre-tax value and yield to
maturity of the non-callable mortgage. Assuming new loans to be issued at par the
after-tax value of the non-callable mortgage can be found by discounting after-tax cash
flows with the after-tax yield to maturity of a new loan. We shall refer to this as the par
yield to maturity (PYTM) method. Subtracting the face value of the mortgage provides
an after tax estimate of the exercise value of the option at each date-event.

To discount exercise values down to time zero Christensen extends the pre-tax sto-
chastic model by assuming the short rate to be fully tax deductable. This leads to a
partial differential equation for the after tax value of the option46. In the binomial
setting we get the following after-tax version of the backward equation:

(4.7)
Vτ(n, s) =f(n, s) + (1− τ)c(n, s)

+pτ(n, s) {θ(n, s) ⋅ Vτ(n + 1, s + 1) + (1− θ(n, s)) ⋅ Vτ(n + 1, s)}

46 Cf. Christensen (1985) relation (32).
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where the superscript indicates that all interest payments in the cash flow have been

converted to after tax payments by the multiplication of .
denotes the one-period after-tax discount factor. We

shall refer to this as thelocal no-arbitragemethod (LNA).

The valuation procedure is attractive in the sense that the widely used after-tax yield to
maturity method is used for the main non-callable part of the mortgage, while the
stochastic differential equation only applies to the option part, the valuation of which
is less clear-cut anyway.

One drawback of the method is the heavy computational costs. For the valuation of a
30 year mortgage in a lattice with monthly time steps close to 65,000 different date-
events must be considered. Assuming quarterly payments a third of these date-events
will be decision points for the prepayment option. At each decision point a numerical
calculation of pre-tax yield to maturity is necessary and must be followed by the
discounting of the remaining after-tax cash flow from the mortgage. Even if a fast
computer could do the job in a few minutes the practical use of the model would be
limited.

Our second objection is of a more theoretical nature. Christensen (1985) employs two
after-tax valuation methods, the par yield to maturity (PYTM) and the local no-arbi-
trage method (LNA). But in general these methods give different results.

The local no-arbitrage method can be used to price non-callable cash flows as well. To
compare the methods we have therefore calculated after-tax values of different
non-callable bonds.

Table 4.1 illustrates the percentage difference between after-tax and pre-tax value of
different 20 year annuity bonds with quarterly payments. Only after-tax values varies
across columns. Calculations are done for coupon rates ranging between 5 and 20%.
Three different choices have been made for the initial term structure: A linearly declin-
ing yield curve starting at 15% with a yearly slope of -0.2273%, a flat yield curve at
12.55% and a linearly rising yield curve starting at 9% with a slope of 0.3552%. All
three yield curves have been carefully selected to price the 12% coupon bond at par.

The first column contains the par yield to maturity (PYTM) values. By the annuity
assumptions all bonds share the same pre-tax yield to maturity, which in addition is the
same for all three yield curves. The 12% bond is priced at par and its pre-tax value

τ
(1− τ)

pτ(n, s)= exp(−r (n, s) (1− τ)dt)
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Table 4.1: Difference between after-tax and pre-tax values as a percentage of pre-tax
value for different coupon rates.

Par yield Local no-arbitrage Par value arbitrage-free
to method

Coupon maturity Declining Flat Rising Declining Flat Rising

5.0 20.72 21.14 18.62 14.45 20.87 20.95 21.00
6.0 16.48 16.95 14.42 10.26 16.68 16.71 16.69
7.0 12.78 13.29 10.76 6.60 13.02 13.00 12.92
8.0 9.54 10.08 7.55 3.41 9.81 9.75 9.63
9.0 6.69 7.25 4.73 0.61 6.99 6.90 6.73

10.0 4.18 4.76 2.24 -1.85 4.50 4.38 4.19
11.0 1.96 2.56 0.05 -4.01 2.30 2.16 1.94
12.0 0.00 0.61 -1.88 -5.91 0.35 0.20 -0.04
13.0 -1.74 -1.12 -3.60 -7.59 -1.38 -1.55 -1.80
14.0 -3.30 -2.67 -5.13 -9.09 -2.92 -3.10 -3.36
15.0 -4.68 -4.05 -6.49 -10.41 -4.30 -4.49 -4.76
16.0 -5.92 -5.29 -7.71 -11.60 -5.54 -5.73 -6.00
17.0 -7.03 -6.40 -8.80 -12.65 -6.65 -6.84 -7.12
18.0 -8.03 -7.40 -9.79 -13.60 -7.65 -7.85 -8.12
19.0 -8.93 -8.31 -10.67 -14.45 -8.56 -8.75 -9.02
20.0 -9.75 -9.13 -11.47 -15.21 -9.37 -9.57 -9.84

coincides with its after-tax value. Bonds with coupon rates below 12% is valuable to a
private investor compared to the par bond, while bonds with coupon rates above 12%
is attractive for private borrowing. As discussed in the previous sections there is room
for infinite tax arbitrage, if private investors were freely allowed to issue high coupon
bonds and invest the proceeds in low coupon bonds.

The next three columns shows the same calculation using the local no-arbitrage
method (LNA). The results differs sharply from par yield to maturity values. For the
12% par bond the LNA method results in deviations of after-tax values ranging
between 0.61% and -5.91% depending on the yield curve. Similar results apply to the
other coupon rates. The different after-tax values stem from differences in discounting.
The PYTM method uses the same after-tax discounting rate throughout the loan. The
LNA method discount at each date-event using a range of one-period after-tax rates. In
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general LNA seems to underestimate after-tax values relative to PYTM for flat and
rising yield curves, while the results for the declining yield curve correspond rather
closely.

To summarize it was shown that the LNA method is unable to fit the after-tax values
computed by the PYTM method. On the other hand the PYTM method is computation-
ally demanding and it can only be used on non-callable cash flows.

In the following we shall suggest a slight modification of the LNA method. The local
arbitrage condition (4.7) still applies, but private investors use a different set of martin-
gale probabilities, which are consistent with the assumed structure of after-tax discount
factors at time zero.

The column labeled "par value arbitrage-free" (PAF) contains the values of an after-tax
lattice in which the future martingale probabilities are adjusted in such a way that the
after-tax calculation corresponds to the current after-tax term structure. In the example
the after-tax term structure is derived by assuming that the current A-bonds consists of
ordinary bonds issued at par, cf. section 4.2. As seen, the values are very close to the
par yield values. The small difference in the valuation of the 12% par bond is due to
the fact that the after-tax term structure is computed from ordinary bonds, while the
PYTM valuation is based on a 12% annuity bond.

The after-tax lattice can be very efficiently constructed as a special case of the forward
induction method introduced by Jamshidian(1991) and discussed in section 3.1.4. The
first step is to calibrate the pre-tax lattice. Any version of the arbitrage-free model
could be used. The calibration procedure results in a lattice of future short rates,

. To derive the after tax lattice we assume the following:

1) Private investors agree with institutional investors on the lattice of future short
term interest rates .

2) Short-term interest rates are fully taxed at the rate .

3) Private investors use a time dependent martingale probability .

4) The after-tax valuation of private investors matches the initial after-tax term
structure .

r (n, s)

r (n, s)

τ

θn
τ

dτ(t)
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As the martingale probabilities are closely connected to the risk preferences of the
investor it seems reasonable to assume that these values differs between private and
institutional investors. The value of can be derived by the following procedure:

Let denote the one-period after-tax discount factor at

date-event , while denotes then-period after-tax discount factor at time
zero. could be found from the term structure of A-bonds as shown in the previ-
ous section. Finally we let denote the after-tax Arrow-Debreu prices i.e. the
value at time zero of a primitive security having an after-tax cash flow of one at
date-event and an after-tax cash flow of zero elsewhere. Defining

and we can write the forward
equation (cf. section 3.1.4) as

(4.8)

The Arrow-Debreu prices can be used to value any kind of time- and state-dependent
after-tax cash flow. As a special case we have

(4.9)

To interpret equation (4.9) consider a security paying an after-tax cash flow of one at
time n+2 independent of state. At date-event the security will be worth

. Its value at time zero is found as the summation across all states at time
using the Arrow-Debreu prices and by assumption 4) this value must

be equal to .

Substituting from equation (4.8) gives the following relation between

and

(4.10)

θn
τ

p(n, s) ≡ exp(−r (n, s) (1− τ)dt)
dτ(n)(n, s)

dτ(n)
G(n, s)

(n, s)
G(n, −1) ≡ G(n, n + 1) ≡ 0 p(n, −1) ≡ p(n, n + 1) ≡ 0

G(n + 1, s) = θn
τ p(n, s − 1)G(n, s − 1) + (1− θn

τ )p(n, s)G(n, s)

dτ(n + 2) = ∑
s = 0

n + 1

G(n + 1, s)p(n + 1, s) .

(n + 1, s)
p(n + 1, s)
n + 1 G(n + 1, s)

dτ(n + 2)

G(n + 1, s)
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τ
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τ ∑
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τ ) ∑
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p(n, s)G(n, s)p(n + 1, s)

≡ θn
τSn
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Equation (4.10) defines as a linear function of . Solving for a recursive

relationship is found, which determines the after-tax martingale probabilities, , as a
function of , and :

(4.11)

From a numerical point of view relation (4.11) provides a very efficient algorithm.
While a Newton-Raphson procedure was needed to calibrate the pre-tax lattice the fact
that enters linearly into relation (4.11) allows for a direct computation.

The after-tax lattice prices current A-bonds correctly, but the procedure does not
assure that after-tax valuation of future A-bonds will fulfil the same condition. This
could be a problem, especially if the lattice is used for the evaluation of complex
dynamic tax-arbitrage strategies47.

4.4  Summary

In this section we have discussed differential taxation and bond market equilibrium. As
shown by several authors a no-arbitrage equilibrium with differential taxation cannot
exist without restricitions on either trading possibilities or rationality.

We have suggested an ABC-model for the bondmarket, having an institutional setting
close to the current Danish tax system. The main restriction is that only A-bonds, i.e.
one specific bond type and only one coupon rate, could be freely issued by private
investors. No-arbitrage equilibrium for A-bonds ensures that pre-tax and after-tax
values coincide, which uniquely determines an after-tax term structure. The no-arbi-
trage equilibrium is characterized by a segmented bond market with earlier issued low
coupon bonds being held solely by private investors. As long as the supply of earlier
issued low-coupon bonds is limited relative to gross taxable income, differential tax-
ation exists with private investors valuing cash flows on an after-tax basis.

dτ(n + 2) θn
τ θn

τ

θn
τ

G(n, s) p(n, s) p(n + 1, s)

θn
τ =

dτ(n + 2) − Sn
+

Sn
− − Sn

+

θn
τ

47 As an alternative route of research it may be possible to point out a single bond at each date-event
as the relevant refinancing bond, say a par bond, and set risk neutral probabilities in order to price
it at the same price before and after tax.
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In the last section taxes was introduced into the intertemporal arbitrage-free model. It
was shown that by assuming different risk preferences between private and institu-
tional investors, the same model could be consistent with the initial pre-tax as well as
the initial after-tax term structure. The after-tax lattice was developed by an efficient
algorithm based on the Jamshidian(1991) forward induction technique.
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5 Optimal Prepayment Behaviour

The individual borrower can be seen as a holder of a non-callable mortgage plus an
American option, giving him the right to buy back the mortgage at face value on any
date until maturity. It would thus seem natural to model the prepayment behaviour
along the lines of standard option theory, in which case the borrower follows an
optimal value-minimizing strategy, calling his loan as soon as the value of the
non-callable mortgage less the value of the option exceeds the call price.

Models with this kind of borrower behaviour has been proposed and analysed by e.g.
Brennan and Schwartz (1977) in the case of standard callable bonds while Christen-
sen(1985), Jakobsen and Tanggaard(1986), Mouritsen and Møller(1987) and
Dahl(1991) analyses Danish MBBs. This chapter will study the American option
model for MBBs in the framework of the binomial model developed in section 3.3.
The American option model will provide insight into the decision problem facing the
individual borrower, but as will become evident the model has some limitations when
used as a pricing model for MBBs.

Section 5.1 specifies the prepayment function of the American option (AO) model.
The prepayment function is determined by optimal prepayment behaviour and section
5.2 shows how rational borrowers would react to changes in the economic environ-
ment. Section 5.3 uses the after-tax framework of section 4.3 and shows that the
introduction of taxes works similar, but not equivalent, to higher prepayment costs in a
pre-tax model. Changing to a higher coupon rate for tax-reasons is possible in the
Danish mortgage system and section 5.4 discusses how this ’delivery-option’ may
affect prices through its impact on prepayment behaviour. We finally show, how
severe discontinuity problems arise, when the prepayment function of the American
option model is used in a pricing model for MBBs.

5.1  The basic decision problem

Assume for the moment that borrowers as well as investors value cash flows in a
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pre-tax setting48. In the absence of risk free arbitrage possibilities both parties will thus
evaluate any interest rate dependent cash flow according to (3.1). In the American
option model the borrower has to decide in each period between prepaying or continu-
ing the loan. If he decides to prepay the loan, he has to pay the remaining principal at
the first possible settlement date, plus any interest and repayments due in the period
from his decision up to the final payment. The value of this is as discussed in
section 3.3. The borrower will furthermore encounter various transaction costs which
are assumed to be a fixed percentage of . Total prepaying cost will thus be

. The value of the mortgage in case of no prepayment will be
denoted . Using the value-minimizing principle the value of the mortgage at
date-event is given by

(5.1)

where by the standard pricing formula (3.20):

(5.2)

and for all states s.

Under the assumption of rational value minimizing behaviour from the pool of mort-
gage holders the prepayment function is given by:

(5.3)

The price of a MBB can now be found by a standard backtracking procedure. At each
date-event starting from maturity one first calculates the value of and in order
to evaluate the prepayment function and then uses the prepayment function to calculate
the value of the MBB by formula (3.19) . Repeating this two-step procedure down to
date-event (0,0) completes the pricing model.

W(n, s)

γ W(n, s)
Wm(n, s, γ) ≡ (1+ γ)W(n, s)

Vm
+(n, s, γ)
(n, s)

Vm(n, s, γ) ≡ min{Wm(n, s, γ), Vm
+(n, s, γ)}

Vm
+(n, s, γ) = f(n, s) + c(n, s) +

1
2

p(n, s) {Vm(n + 1, s + 1, γ) + Vm(n + 1, s, γ)}

Vm
+(nM, s, γ) = 0

λ(n, s, γ) =




1    if  Wm(n, s, γ) < Vm
+(n, s, γ)

0     otherwise

Wm
+Wm

48 The model of this section will be a close to Dahl(1991). The paper by Dahl concentrates on the
empirical results, but according to the paper, he uses a pre-tax BDT-model with a constant cost-
rate. The term of notice is not modelled explicitly. The current chapter can be seen as a more
formal statement and analysis of Dahls model with several extensions.
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5.2  Determinants of critical yield

In this section the borrowers prepayment decision will be studied in more detail. As no
closed form expressions are available for this kind of model the argument will be
supported mainly by numerical examples. Many of the observations have been stated
elsewhere, but we summarize them here for easy reference. Unless otherwise stated the
basic parameters for the examples are the following. Valuation is done using the
BDT-model as described in section 3.1 with 32 steps per year49 and a constant future
short rate volatility of 15%50. Yields are quoted using annual compounding and we
assume the initial term structure to be flat. Mortgages are annuities with 20 years
remaining, quarterly payments and an annual coupon of 12%. The cost rate as well as
the term of notice will initially be set to zero. To ease comparison market prices and
mortgage values are shown net of accrued interest.

Figure 5.1: The compari-
son between prepayment
and hold-on value of the
mortgage.
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49 Computations of critical yield use only 8 steps per year.
50 A two stage PC program developed by the author has been used in the following chapters. The first

step calibrates pre-tax and after-tax lattices given any specification of the initial term structure and
volatility curve. The second step performs the backwards pricing procedure for the different
pre-tax and after-tax versions of the American option model. The calculations of each critical yield
reported below are done with several iterations of the calibration and valuation steps using a
Newton-Raphson procedure. A full summary of pricing results is saved in the Paradox database
format at the end of each valuation. The databases are later crosstabulated and used as input to
various graphing programs etc.

The program can also be used with the required gain model of the next chapter. For the empirical
analysis of chapter 7 these calibration and valuation procedures have been transferred to another
PC program, RIO/Optikon, developed by the author, which uses actual yield curve estimates and
bond information to derive price and duration estimates for different samples of Danish MBBs.
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The basic prepayment behaviour is illustrated in figure 5.1 for different yield levels.
For each date-event and given the initial term structure the borrower is assumed
to compute the prepay value of the mortgage, . This is compared to the hold-on
value of the mortgage, . If the optimal strategy will be to prepay the loan,
while the rational borrower should continue his loan in case . Thecritical
yield, , is defined as the yield level, at which the two curves intersect. If the term
structure is flat the critical yield coincides with the common level of interest rates,
while in general the critical yield is defined as the yield to maturity of a bond with
payments equal to the MBB assuming no prepayments. Analogous to earlier work see
e.g. Christensen(1985) the critical yield is used as a convenient statistic summarizing
the prepayment potential of the individual mortgages.

The critical yield is a sufficient statistic as well due to the fact that a knowledge of
critical yield for all future dates provide full knowledge of the stochastic cash-flow to
the investors. Different models for prepayment behaviour, with equivalent values of
critical yield for all future dates, should therefore give rise to equivalent prices for the
MBB. This possibility will be discussed in the next section.

It can be illuminating to split the value of the mortgage into the value of the underlying
non-callable mortgage, , and the value of the prepayment option, , with

. Likewise we can at any time define the exercise value of the prepayment
option as and the hold-on value of the option as

. From the option point of view the mortgagor should prepay,
when the exercise value exceeds the hold-on value that is . The two option-
values are shown in figure 5.2. In general both the value of and will be an
increasing function of and thereby a decreasing function of the level of interest
rates51.

The borrower is allowed to prepay at any date, but the rational borrower would
postpone the decision as long as possible that is to the decision dates, , defined in
section 3.3. If he should decide to prepay between the dates to , his debt at date

will be equal to . If the prepayment decision is deferred to date , he has the
option of continuing the loan, leaving the value of his mortgage at

(n, s)
Wm

Vm
+ Vm

+ > Wm

Vm
+ < Wm

r *

Bm Cm

Cm = Bm − Vm

Cm
* ≡ max{0, Bm − Wm}

Cm
+ ≡ max{0, Bm − Vm

+}
Cm

+ ≤ Cm
*

Cm
+ Cm

*

Bm

νk

νk − 1 νk

νk Wm(νk) νk

51 As with almost any conclusion drawn in this paper there will probably exist cases in which the
opposite is true, especially if extreme volatility structures are permitted. The conclusion refers to
the "normal" case represented by the numerical examples, which hopefully covers the cases of
empirical interest.
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Figure 5.2: Com-
parison between
exercise and
hold-on value of the
borrowers prepay-
ment option.

. As any cash-flow due up to will be unaffected by the
prepayment decision, we can conclude that at any date between and .
In the remainder of this chapter the prepayment evaluation is therefore done for
decision dates only.

We start by showing how time to maturity affects the prepayment decision. Assume
the rate of transaction cost to be zero. At the last decision date before maturity the time
value of the option is zero, and the borrower will prepay, if the mortgage value
exceeds par. With a flat yield curve this corresponds to a critical yield equal to the
effective coupon rate, defined by , wherec is the coupon rate andk is
the number of payments per year. At earlier decision dates, the borrowers take the time
value of the option into account, which means that prepayment occurs at interest rates
below the effective coupon rate i.e. .

The connection between time to maturity and critical yield is illustrated in figure 5.3
for different levels of the coupon rate52. As expected the critical yield is negatively
related to the time to maturity, and it converges towards a constant long run level more
than 2 percentage points below the effective coupon rate. The critical interest rate
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Vm(νk) = min(Wm(νk), Vm
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+ ≤ Wm νk − 1 νk

r = (1+ c/k)k − 1

r * < r

52 The maximum length of Danish mortgages is 30 years, but in plots of critical yield as a function of
time to maturity we use a maximum of 50 years to ease the comparison of asymptotic behaviour.
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Figure 5.3: Connection
between critical yield
and time to maturity for
different levels of the
coupon rate.

depends on the coupon rate in a nearly linear fashion, indicating that loans with
different coupon rates can be analysed simply by translating the results for a single
coupon rate to a different yield level.

An increase in the cost rate, which is similar to an increase in the exercise price of the
option, reduces as well as . The direct influence on is the strongest, leading
to a fall in the critical interest rate, as shown by 5.4. The largest effect is seen for the
shorter maturities due to the lower volatility of the underlying non-callable mortgage.
As time to maturity increases, the underlying non-callable mortgage converges toward
a constant volatility and thereby a constant impact from the cost rate. The term of
notice would play a role similar to the cost rate, in that a longer term of notice
increases the prepayment value, provided the current yield level is below the effective
coupon rate.

In practice direct costs of prepayment lies somewhere between 2-5% depending on the
size of the mortgage. Calculating with cost-rates of 20% thus seems grossly
exaggerated. But as shown in the next section, taxation affects the prepayment
behaviour of borrower in a way, which may be described as a very high level of
prepayment costs.

0 10 20 30 40 50
6%

7%

8%

9%

10%

11%

12%

13%

Years to maturity

Critical yield

Coupon
9%

10%

11%

12%

Cm
+ Cm

* Cm
*



  5.3   After-tax prepayment behaviour 69

Figure 5.4: Compari-
son of critical yield and
time to maturity for
different values of the
cost rate

5.3  After-tax prepayment behaviour

The preceeding discussion assumed that borrowers as well as investors valuate in a
pre-tax setting. A more realistic assumption would be to assume that borrowers and
investors decide on the basis of the after-tax cash flows associated with prepayment.
The problem is that the two sides of the market represents two different tax systems.
The representative mortgage owner, a firm or a private household, has an asymmetri-
cal taxation scheme in that the interest payments are tax deductible while capital gains
and losses are tax exempt53. On the other hand the typical bond investor that is a
pension fund, an insurance company, a bank or a firm is equally taxed of interest
payments and capital gains. Referring to the analysis of section 4 we shall refer to the
two groups as private investors and institutional investors respectively.

To introduce differential taxation in the prepayment model one must modify the prin-
ciple of arbitrage free pricing and accept some kind of market restrictions. Using the
ABC-model introduced in section 4.2 we assume that private as well as institutional
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53 Starting from 1991 companies are taxed equally of interest income and realized capital gains.
Corporate borrowing represents a borderline case in that capital losses stemming from issuing
bonds below par is tax deductable if the coupon rate on the loan is below a certain minimum rate,
at the present 8% p.a.. While the change in tax rules has opened up a market for low or zero
coupon bonds for corporate borrowing this market is tiny compared to the amount of outstanding
corporate loans with coupon rates at or above 8% for which only interest payments are tax
deductable.
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investors have unrestricted access to A-bonds of all maturities, but to avoid tax-arbi-
trage only one coupon rate is allowed for each maturity. This assumption uniquely
determines pre-tax and after-tax discount functions, which is used to price non-callable
cash flows. Then the par value arbitrage-free principle, described in section 4.3, is used
to derive an after-tax lattice consistent with the current after-tax term structure. With
these prerequisites pre-tax as well as after-tax values can be found for all interest rate
dependent options.

Figure 5.5 shows the influence of the taxrate on critical yield for different times to
maturity. With a term of notice equal to zero the prepayment value of the mortgage is
independent of the tax-rate. When interest rates fall, the borrower has a mortgage with
an effective coupon rate higher than prevailing market rates. With prices set by institu-
tional investors high coupon loans are preferred relative to new loans with lower
coupon rates. This inherent tax advantage lowers the hold-on value of the mortgage
relative to the pre-tax situation, which eventually leads to a fall in the critical yield
level. The critical yield for long maturities are affected most, because these mortgages
have the largest difference between pre-tax critical yield and the coupon rate, and
because their tax-advantage runs for a longer period. For very short maturities the
pre-tax critical yield level is very close to the coupon rate, and the influence from
taxation is minor.

Figure 5.5: The
influence of the
tax-rate on criti-
cal yield for a
20 year 12%
annuity mort-
gage with
quarterly
payments.
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The impact from taxation is especially important for the so-calledcash-loansissued
prior to 1986. For these loans the borrower is allowed to deduct the full market rate of
interest at the time of issuance. From 1986 all loans through credit institutions are
issued as so-calledbond-loans, for which only the coupon rate on the bonds is
tax-deductable. Cash-loans issued below par therefore carries a tax advantage relative
to an otherwise identical bond-loan. The tax-advantage is lost in case of prepayment,
because the borrower has to repay the full face value of the bonds backing the loan.

Bonds issued during the cash-loan system are typically 20 or 30 year annuity bonds
with semiannual payments and 10 or 12% coupon.

The cash-loan system can be illustrated by a simple one-period example: To finance a
small mortgage a credit institution sells nominal DKK 100.000, one year, 10% bonds
at a market rate of say 13%. During the cash-loan system the credit institution could
now offer the borrower a loan with face value equal to the proceeds from sale that is
110,000/1.13 = DKK 97.345 and a coupon rate equal to the yield to maturity of the
bond that is 13%. In this way the non-deductable capital loss on the bonds are con-
verted to a fully tax-deductable interest payment.

Assuming taxation at 50%, the borrowers after-tax payments on the cash-loan would
be . After-tax payments on a similar bond-loan
would amount to . As long as the cash-loan
rate is higher than the coupon rate, the cash-loan has a tax advantage compared to a
similar bond-loan. Note that after-tax payments on a bond-loan is equal to after-tax
payments on a cash-loan issued at par.

In case of prepayment the borrower must pay the full DKK 100,000 face value of the
underlying bond. For a one-year bond-loan prepayment would thus be optimal as soon
as market rates drops below the coupon rate of 10%. For the one-year cash-loan with
cash-rate of 13% prepayment would however not be optimal unless market rates drop
below 7,34% corresponding to an after-tax payment on the new loan of 103,672.

To asses how the cash-loan system affects prepayment behaviour, we have computed
critical yields of the standard 12% annuity bond with quarterly payments for different
values of the cash-loan rate and for different values of time to maturity. The results are
summarized in figure 5.6.

97, 345⋅ (1+ (1− 0.5)0.13) = 103, 672
100, 000⋅ (1+ (1− 0.5) ⋅ 0.10) = 105, 000
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Figure 5.6: Compari-
son of critical yield and
time to maturity for
different values of the
cash-loan rate.

A cash-loan rate of 12% corresponds to the bond-loan case analysed above. Owners of
bond-loans will prepay at lower interest rates as time to maturity increases. This is not
necessarily true for cash-loan owners. The cash-loan system increases the share of
deductable interest payments relative to total payments, and short term loans are
therefore affected most. As seen from the figure, a high cash-loan rate makes
prepayment of short term loans very unlikely due to the loss of the tax-subsidy. In
extreme cases no positive interest rate exists, which will enable the borrower to
prepay. For longer maturities interest payments dominates total payments irrespective
of the cash-loan rate, and the impact from the cash-loan system declines converging
towards zero with increasing maturity.

The introduction of after-tax calculations complicates the model, and it increases
computation times. One might therefore wonder, if after-tax prepayment behaviour
could be approximated by a simple pre-tax model. An example of this line of reason-
ing is found in Dahl(1991), who uses a pre-tax prepayment model with a zero term of
notice and a constant cost-rate. Through different choices of the cost rate, he seeks to
capture not only the direct costs, but also indirect costs from taxation, term of notice
etc.

To investigate this issue, we have calculated implicit cost-rates for different maturities
that is the cost-rate in the pre-tax model, which results in the sameinitial critical yield,
as the one obtained from the more involved after-tax model.

0 10 20 30 40 50
0%

2%

4%

6%

8%

10%

12%

14%

Years to maturity

Critical yield

Cash-loan
21%

18%

15%

12%



  5.3   After-tax prepayment behaviour 73

Table 5.2: Implicit percentage pre-tax cost-rates corresponding to initial critical yield
of a 12% annuity with quarterly payments.

Time to Tax-rate Tax-rate Tax-rate Tax 50%,
maturity 50%, direct 35%, direct 50%, cost 0%,

cost 0% cost 0% direct cost cash-loan
2% rate 18%

1 0.00 0.00 3.90 4.07
2 0.00 0.00 3.77 6.43
3 0.00 0.00 3.65 8.62
4 0.00 0.00 3.54 10.49
5 0.04 0.01 3.46 12.07

10 0.70 0.43 3.62 15.83
15 1.79 1.14 4.44 15.07
20 3.09 1.96 5.57 13.03
25 4.35 2.71 6.75 11.37
30 5.44 3.33 7.81 10.24

The first column of table 5.2 shows the implicit cost-rate for an after-tax model with a
direct cost-rate of 0% and a tax-rate of 50%. It is seen that the introduction of taxes has
indeed an effect on critical yield similar to a higher cost-rate in the pre-tax model. The
implicit cost-rate is dependent on maturity, rising from a value of 0.04% for a 5 year
loan to 5.44% for a 30 year loan. The maturity dependency indicates that an approxi-
mating pre-tax model, which fits critical yield at the first settlement date, will not be
able to fit critical yields at later dates, unless the cost-rate is specified as a decreasing
time dependent function as well.

The second column contains implicit cost-rates at a tax rate of 35% and direct costs of
0%. A lower tax rate lowers the implicit cost-rate with the largest effect at longer
maturities. The third column shows the effect of increasing the direct cost rate to 2%
with a tax rate of 50%. Comparing to the first column it is seen that implicit cost-rates
increases by more than the increase in direct costs. This can be explained by the lower
volatility of the after-tax mortgage values relative to pre-tax values. Finally the fourth
column shows implicit cost rates for the same 12% annuity with a cash-loan rate of
18% and a tax rate of 50%. To approximate the cash-loan one should use average
pre-tax cost-rates between 4.07% and 15.83%, but now the cost-rate exhibits a
non-monotonous dependency on the remaining time to maturity.
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The conclusion from these few examples is that taxation has a specific affect on
prepayment behaviour, which is different from the way in which the cost-rate enters
the pre-tax model. There is therefore no simple connection between a given after-tax
model and the size of the corresponding pre-tax cost-rate. Even assuming such a
connection to be found, the pre-tax model should have a time-dependent cost-rate,
which probably leads to a kind of model just as complex as the after-tax models. With
respect to the term of notice, one should bear in mind that this affects the investor side
as well. If borrowers decided to prepay, the value of the bond equals and not face
value.

5.4  The delivery option.

The introduction of differentially taxed investors in a pre-tax equilibrium model opens
a Pandoras box of arbitrage possibilities. Section 5.3 showed prepayment to be less
likely in an after-tax setting, because by prepaying after a fall in market rates, the
borrower looses the tax-advantage inherent in his current higher coupon loan. A simi-
lar argument can be made, if market rates rise, but now there is a tax-advantage in
switching to a new loan with the coupon rate closer to the market rate of interest.

Switching to a higher coupon loan is possible in the Danish mortgage credit system
through the delivery option54. At any time borrowers are allowed to buy back the bond
equivalent of an earlier issued loan. On delivery of the bonds to the credit institution,
the old loans will be cancelled, and the borrower can obtain a new loan. Assuming a
pre-tax bond equilibrium, this represents an after-tax gain after a rise in market rates,
as discussed in section 4.2.

Conversion to higher coupon rates has been actively marketed by the mortgage credit
institutions for several years, but the examples used to promote their services are often
obscured by the use of a new callable mortgage as the successor of the old callable
loan. In this setting one can picture a no-loose situation, in which the debtor gains from
a fall in interest rates by prepaying his 12% loan and refinancing with a 9% loan.
When interest rates later rises, the debtor not only gains a tax advantage by exchanging
the 9% loan to a 12% loan, he also obtains a loan with a larger prepayment potential
and is ready to gain by the next fall in interest rates.

W

54 The term exchange option would be closer to the Danish term ’ombytning’ normally used, but we
feel that the term delivery option provides a better description of the transaction involved.
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The delivery option has been analysed in Christensen and Sørensen(1992) by use of
numerical examples, but their paper does not model the dynamic debt-management
strategies which could be pursued by individual borrowers.

The current section contains a formal analysis of the delivery option. We start with a
model for non-callable bonds and show how the exercise value of the delivery option
depends on coupon rate, tax-rate, market rate of interest and remaining time to matur-
ity. For MBBs the value of the delivery option depends on the prepayment option as
well. By extending the analysis of the previous section, we set up a dynamic
debt-management model, in which the borrower determines the optimal strategy with
respect to the combined exercise of the prepayment as well as the delivery option.
Finally it is shown how the delivery option affects MBB-prices through its influence
on borrowers prepayment behaviour.

The first step towards an understanding of the delivery option will be to analyse the
exercise value of the delivery option using a simple model with no prepayments.
Assume a flat yield curve equal to the continuously compounded rater. The borrower
has issued a non-callable ordinary bond with face valueF and a continuously com-
punded coupon ratec. The borrowers tax-rate equals payed continuously. As in the
model of the previous section prices are in a pre-tax equilibrium dominated by
institutional investors, while the borrower valuates future after-tax payments using the
after-tax term structure derived from par bonds with no prepayment or delivery options
attached.

Integration of the present value equation leads to the following simple expression for
the market price of aT-year bond with coupon ratec and face valueF

(5.4)

Note that par bonds have , which is equivalent to . The after-tax value of the

mortgage, , is equal to
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By construction the after-tax value of a par bond equals its pre-tax value. To simplify
notation the following analysis will assume .

If the borrower purchased the bond at the market priceP, he could cancel his loan by
delivering the bond to the credit institution. The loan could then be refinanced by
issuing par bonds with face value and after-tax value equal toP. The exercise value of
the delivery option will be denoted . Inserting (5.4-5) and collecting terms
yields the following expression for the exercise value per unit of face value:

(5.6)

The exercise value of the delivery option is a product of three different terms. The first
term is related to the difference between the current market rate and the coupon rate.
With coupon rates equal to market rates the exercise value will be zero. The second
term represents the tax savings on interest payments. If the borrowers tax rate equals
zero the exercise value will be zero. The term will be positive for any . The value
of the delivery option is therefore a pure tax-feature caused by differential taxation.
The third term equals the present value of the non-deductable face value. For a
perpetuity this term will be zero, and no gain from delivery can be obtained. This
simply reflects that all payments on an infinitely long bond are interest payments,
irrespective of the coupon rate.

For any and there is a positive exercise value provided and a negative

if . In the following we shall assume that .

The exercise value depends on four different parameters with partial derivatives given
by
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(5.7)

The higher the coupon rate on the old loan the lower will be the exercise value, while
an increase in the tax-rate yields a higher gain. An increase in time to maturity works
in two opposite directions. The gain increases, because more interest payments can be
converted to the higher coupon rate on the new loan, but at the same time the gain
decreases, as the weight of the non-deductable principal payment relative to interest
payments gets lower. The dependence of the exercise value on time to maturity will
display a hump increasing up to the value of and decreasing
afterwards. With and the maximum gain is attained at years.

An increase in the market rate of interest has an even more complex influence on
exercise value. Denoting the three positive terms in equation (5.6) asu, v and w
respectively it is seen from (5.7) that the gain is lowered due to the increased discount-
ing of the principal payment, while the increased size of tax-deductable interest pay-
ments and the increased difference to the old coupon rate tends to increase the gain. In
the reduced expression both terms in the bracket are positive for , which means
that the gain will increase at least for maturities below and slightly above , while it
may be possible for the gain to decrease with an increase in the market rate of interest
for longer term loans.

Figure 5.7 shows the percentage exercise value as a function of time to maturity. As
expected we get humped curves due to the diminishing value of the non-deductable
principal payment. The exercise value of longer term loans are rather insensitive to the
market rate of interest, and for high interest rates a further increase will even lead to a
fall in exercise value.
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Figure 5.7: Exercise

value with continuously

compounded ordinary

loans. Coupon rate =

12%, tax-rate = 50%.

We now return to the callable annuity with quarterly compounding. Despite the com-
plex nature of the exercise value for the delivery option one can use a simple extension
of the prepayment model to study the rational behaviour of a borrower facing the
prepayment as well as the delivery possibility.

In the previous sections the mortgage was analysed as a package consisting of a
non-callable mortgage and a call option with exercise price equal to the remaining face
value. When delivery is taken into account, one simply adds the delivery option, which
is an American option, giving the borrower the right to buy back the underlying
non-callable mortgage at a price equal to the market price of the callable bond.

At each decision date the borrower has the following options: He could prepay his loan
at a cost of , he could continue the loan, the value of which is , or finally he
could buy back the bond equivalent of the loan, the value of which is equivalent to the
market price of the bond, . At delivery the borrower will incur transaction cost
assumed to be a constant non-deductable rate leaving total delivery costs at

. After-tax present values and are calculated using the par value
arbitrage-free method introduced in section 4.3. Assuming the borrower to follow a
rational value minimizing strategy, the value of his mortgage at any date-event is given
by:

(5.8)
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The market price of the callable bond is calculated given the optimal prepayment and
delivery behaviour of the borrower along the lines of section 3.3. Note that at delivery
the bond is bought at market prices, which means that the only way in which the
delivery option will affect market prices is through a change in the borrowersprepay-
mentbehaviour. This influence will be studied below.

Figure 5.8:

Exercise value

of the combined

prepayment and

delivery option

for annuity

loans with

quarterly pay-

ments. Coupon

rate = 12%,

tax-rate = 50%.

Figure 5.8 shows exercise values in a 12% mortgage for different levels of the market
rate of interest assuming zero costs of prepayment and delivery. To give an example
consider a 15 year mortgage when market rates equals 15%. To deliver the mortgage
the borrower should buy callable bonds worth 87.14. This market price is calculated
with respect to the prepayment as well as the delivery option. The after-tax present
value of the underlying non-callable mortgage is 92.62. The difference of 5.48
represent the after-tax net present value obtained, if he cancels the old 12% loan
through delivery and issues a new loan with an effective coupon rate of 15%.

The values given in figure 5.8 represent the combined influence of the delivery as well
as the prepayment option. The combined effect is not a simple sum of two individual
option values, because the borrower has to exercise both options at the same time. If he
exercises the delivery option, he is bound to give up his prepayment option as well and
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vice versa55. As the value of the prepayment option rises with falling interest rates, this
explains the high exercise values at a market rate of 13% and 15% compared to
non-callable ordinary loans analysed above. The borrower buys back the loan at
market values, which are low due to the prepayment risk. The price of a non-callable
15 year annuity at market rates of 15% is 89.19. For a non-callable mortgage the
exercise value of the delivery option would thus be 3.43 instead of 5.48.

At higher rates of interest the prepayment option is less valuable, but still there is some
differences when compared to the ordinary loans. The maximum gain has moved to
longer loans. This could be explained by the earlier repayment of principal in an
annuity bond relative to a ordinary bond, which diminishes the maturity effect.
Another interesting feature is that the exercise value of a 25 year mortgage is nearly
insensitive to the market rate of interest, while the gain decreases with increases in the
market rate for loans above 25 years.

Equivalent to the critical yield associated with prepayment we define thedelivery yield
as the pre-tax yield to maturity of the underlying non-callable mortgage at the point
where i.e. where the delivery value of the callable mortgage is equal to its
hold-on value.

Figure 5.9: Illus-
tration of the com-
bined prepayment
and delivery
option for a 15
year 12% annuity
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55 When the borrower decides to prepay, he gets a loan with a lower coupon rate. One could say that
he exercises his delivery option at a loss in order to cash in the gain from the prepayment option.
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Figure 5.9 illustrates the decisions facing the borrower having a 15 year 12% annuity
mortgage with quarterly payments. The tax rate is 50%. The curveprepay valueshows
the prepayment value of the mortgage, while the curvedelivery valueshows the value,
if the borrower decides to exercise his delivery option. Assuming zero costs the two
are equal to remaining principal of the mortgage and the market price of the callable
bond respectively. The curvehold-on valueis equal to the after-tax value of the
mortgage, given that the borrower continues his mortgage to the next decision date,
and assuming that he follows an optimal value minimizing strategy afterwards. At
interest rates below critical yield, the borrower will prepay his mortgage as discussed
above.

When interest rates rise, the after-tax value of the remaining mortgage payments rises
relative to their pre-tax value, because the coupon rate becomes lower than the market
rate of interest. At the point labeled ’delivery yield’ the hold-on value of the mortgage
is equal to the delivery value, and the borrower will purchase the bond equivalent at
market prices, and cancel his old loan through the delivery option.

Figure 5.10:

Delivery yield and

critical yield for

different matu-

rities.

Figure 5.10 shows percentage delivery yield for different maturities assuming zero
transaction costs. For comparison we have plotted the critical yield calculated with and
without the delivery option. The exact numbers are shown in the following table.

The delivery yield is shown in column (a) of the table. For a very short term mortgage
the rational borrower should use his delivery option, as soon as the market yield rises
above the effective coupon rate of the mortgage. For longer term mortgages the bor-
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Table 5.3: Delivery yield and critical yield with and without the delivery option for
different maturities.

Gain
Critical Critical Bond After- from

Time to yield yield value tax delivery
maturity Delivery with with no at value to in % of

yield delivery delivery delivery maturity after-tax
(a) (b) (c) (d) (e) value

(f)

1 12.53 11.96 12.20 99.89 100.00 0.12
2 12.57 11.54 11.85 99.60 99.99 0.39
3 13.00 11.24 11.58 98.96 99.70 0.74
4 13.10 10.98 11.36 98.38 99.50 1.12
5 13.18 10.78 11.17 97.75 99.29 1.55

10 14.14 10.05 10.47 92.72 96.58 3.99
15 15.73 9.60 10.00 84.89 90.60 6.30
20 17.15 9.31 9.67 77.41 83.73 7.55
25 18.97 9.13 9.42 69.72 75.43 7.57
30 21.18 9.01 9.25 62.30 69.67 10.58
40  26.11  8.89 9.04 50.65 55.34 8.48
50  30.82  8.84 8.94 43.29 46.77 7.43

rower takes the time value of the delivery option into account. The delivery option
embedded in a 10 year mortgage should be exercised at 14.14%, while the delivery
option in a 20 year mortgage should be exercised at 17.15%. For comparison column
(d) shows the value of the callable bond at delivery, while column (e) shows the
corresponding after-tax value to maturity of the mortgage. Column (f) shows the
exercise value as a percentage of after-tax value.

Delivery yield for longer term mortgages may seem rather large. This could perhaps be
explained by the complex connection between time to maturity and the market rate of
interest discussed above. The rational borrower values the exercise value now against
delivery at the next decision date. As exercise value increases, when time to maturity
decreases, the loss from waiting is small.



  5.4   The delivery option. 83

Perhaps the most interesting question will be how and if the delivery option affects
prices of bonds. At delivery the bonds will be bought at the prevailing market price,
and in that respect the bond owners are not affected. But there is a small effect due to
the way in which the delivery option affects prepayment behaviour. The possibility of
delivery reduces the hold-on value of the mortgage and thereby reduces the critical
yield. To put it differently, the borrower is less inclined to prepay his mortgage due to
the fact that the delivery option makes it less costly to keep the mortgage in case of a
later rise in interest rates. As shown in figure 5.10 and table 5.3 this effect is rather
small however, especially for longer term mortgages. But according to the current
analysis the delivery option should increase prices of callable mortgage backed bonds.

Figure 5.11: Compari-

son of MBB-prices with

and without the delivery

option.

Figure 5.11 compares prices with and without the delivery option for the 12% 15 year
MBB studied above. As expected, prices calculated with respect to both options are a
little above prices with the prepayment option alone. The differences are barely visible
amounting to at most 37 basispoints except for the area between the critical yield with
and without delivery where the differences increases to 79 basispoints. Introducing
positive delivery costs should tend to close the gap even further. The conclusion is
therefore that the delivery option increases MBB-prices, but the effect is small and can
be safely ignored.

This is a partial view of mortgage finance. A more practical inclined reader could
probably reach the opposite conclusion. It could be said that if the borrower prepays
the 12% mortgage issuing a 9% mortgage instead, he gets a new delivery option,
which due to the lower coupon rate of the 9% loan is more valuable than the old one. If
prepayment were valuable without taking the delivery option into account, then it is
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even more attractive afterwards, because the tax-advantage lost by prepaying can be
regained at a subsequent rise in interest rates. This should lead to a rise in critical yield
and a fall in MBB-prices.

The difference between the two conclusions hinges on the assumptions made regarding
the availability of the delivery option. In the analysis above we tacitly assumed the
delivery option embedded in the old loan to be a scarce resource and valued it against
an after-tax lattice of bonds with no delivery options attached. But the delivery option
is not a traded option which demands a premium. Instead it is a part of the tax-system,
working in a complex way, but otherwise similar to a direct tax-subsidy to the bor-
rower. It can therefore be argued that the after-tax lattice and the after-tax valuations
should be modified to reflect the fact that all loans could be delivered after a rise in
interest rates. How and if this modification should be done must await future research.

5.5  A critique of the American option model

The American option model has provided valuable insight into optimal prepayment
behaviour of the individual borrower and as shown in section 5.3 and 5.4 it can be
extended in several directions. Some authors have used the American option approach
as a full pricing model for Danish MBBs. Dahl(1991) uses a pre-tax BDT-model
similar to the one discussed above. Christensen(1985) uses a one factor continuous
time Cox, Ingersol and Ross(1985) model to price the MBB. He explicitly ignores
transaction costs, but includes taxes, which as shown above give rise to similar results.
Mouritsen and Møller(1987) let yield to maturity follow a binomial process and use
this to price MBBs in an after-tax framework. And finally we have used the same
approach in the analysis of the delivery option above.

A problem common to these models is the erratic price behaviour stemming from the
binary prepayment function (5.3). At a decision date the borrower prepays, , if the
prepay value is less than the hold-on value of the mortgage, , and he continues
his loan, if . The resulting value of his mortgage can be written as

, which is a continuous function of and , since the jumps in
happens, where the two values coincide. Seen from the investors point of view there

will however be a discontinuity at the critical yield, because the hold-on value of the
bond will typically be greater than its prepayment value , at the point where the
borrower chooses to prepay. The only exception to this discontinuity is the pre-tax
model with a zero cost-rate, in which the mortgage value coincides with the bond
valueV at all future date-events.

λ = 1
Wm < Vm

+

Wm ≥ Vm
+λ = 0

Vm = λWm + (1− λ)Vm
+ Vm

+Wm

λ
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Figure 5.12: Plot of

price behaviour in

response to discontinu-

ous prepayment func-

tions

The problem is illustrated in figure 5.12 for the standard 20 year 12% annuity with a
tax-rate of zero and a cost-rate of 10%. The term structure model has been computed
with 32 time steps per year. At the critical yield of 8.9% all borrowers prepay their
loans. This leads to a sharp 2 per cent drop in the price reflecting the loss to investors
of an extra settlement period at the higher coupon rate. Even at yields above the
critical yield prices display a jagged pattern reflecting discontinuities at later
settlement dates.

Figure 5.13: Plot of

price behaviour in

response to discontinu-

ous prepayment func-

tions, for different levels

of the cash-loan rate

Figure 5.13 shows calculated bond prices for various cash-loan rates assuming zero
costs and a tax rate of 50%. Even though computations are done with 3 months
remaining to the next decision point, the figure reflects the upcoming discontinuities.
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Increasing the number of time steps could smoothen away most discontinuities at the
expense of longer computation times. The basic discontinuity at the decision dates
would still exist however, and prices would still be highly variable close to the critical
yield. Problems are aggravated, if the model is used to calculate option adjusted
duration or convexity, as a small change in yield can result in large changes in size or
even sign of these measures.

The discontinuity problem has been documented in Christensen(1985) as well as in
Mouritsen and Møller (1987), who suggest that the problem could be solved by avera-
ging over several groups of borrowers characterized by differences in transaction
costs. This procedure helps to reduce the discontinuities, because we now have several
critical rates, and at each rate only a minor share of all borrowers prepay.

In section 6 and 7 we present models, for which the discontinuity problem has been
removed through the use of a continuous prepayment functions.

5.6  Conclusion

In this section the callable mortgage backed bond has been modelled as a non-callable
bond with an embedded American call option, giving the borrower a right to prepay
his loan at any date before maturity. Optimal prepayment behaviour has primarily been
studied in terms of the critical yield at time zero that is the market rate of interest, at
which the borrower decides to prepay his loan. In a pre-tax setting we have studied the
influence of time to maturity, transaction costs, the coupon rate and the term of notice
on critical yield, and in general it was shown that the mortgage will be prepayed at
market rates well below the effective coupon rate.

The arbitrage-free after-tax model developed in section 4.3 was used to analyse the
impact of tax considerations on prepayment behaviour. As interest payments are fully
tax deductable, prepayment was shown to be less attractive on an after-tax basis.
Especially the favorable tax status of cash-loans becomes an effective barrier against
prepayment.

The computation of implicit pre-tax cost equivalents for a range of after-tax models
revealed that taxes enter the prepayment decision very differently from the way in
which transaction costs enter the pre-tax model. This makes the use of cost-adjusted
pre-tax models impractical as a substitute for an after-tax valuation of callable mort-
gage backed bonds - especially for cash-loans.
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The delivery option enables the mortgage owner to cancel his loan at market prices in
exchange of a new loan at a higher coupon rate. The value of the delivery option was
an example of a dynamic tax-arbitrage possibility made possible by the coexistence of
differentially taxed investors in the same market. Our study of the exercise value of the
delivery option showed that its value depended negatively on the coupon rate of the
old loan and it increased with the borrowers tax-rate. As a perhaps counter-intuitive
result the value of the delivery option peaked for loans around 10 years to maturity.
Likewise it was shown that a higher market rate might diminish the gain from delivery.

The analysis of the delivery option for MBBs is complicated by the prepayment
option. We have developed a formal model in which the borrower on an after-tax basis
decides on the combined exercise of his delivery as well as his prepayment option.
Optimal use of the delivery option was shown to affect prepayment behaviour,
although the influence on bond prices was judged to be minor.

It was finally shown that the binary prepayment function used in the American option
model gives rise to discontinuities in price behaviour around the decision point. As
discussed in the next two chapters, this discontinuity can be removed by the introduc-
tion of a continuous prepayment function.
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6 A Prepayment Model with Heterogeneous Bor-
rowers.

In this chapter we propose a model for the pricing of callable mortgage backed bonds
that allows for heterogeneous borrowers and is closely connected to current advisory
practice in the Danish mortgage institutions. We assume that while the current gain
from prepayment is readily available from the credit institutions, borrowers differ in
their assessment of the future value of the prepayment option. To account for actual
prepayment behaviour the future value of the prepayment option is assumed to follow
an exogenously specified continuous distribution. This implies a continuous prepay-
ment function and a correspondingly smooth behaviour of prices and risk measures.

In a previous paper, Jakobsen(1992), the same prepayment function has been discussed
within the context of a binomial process for the yield to maturity of the underlying
non-callable bond. The current model is based on an arbitrage-free BDT-model, which
among other things allows us to study how the shape of the initial term structure
affects bond prices.

The chapter starts by a critical discussion of the "optimal" exercise concept used in
chapter 5. Section 6.2 formally states the model, while price behaviour and derived
risk measures are the subject for section 6.3 and 6.4 respectively. In 6.5 a small
empirical analysis is conducted, which points to the importance of data on the com-
position and tax-status of borrowers in the individual bond issues. A brief summary of
the results can be found in section 6.6.

6.1  Optimal versus actual prepayment behaviour.

The previous chapter used the theory of American options to determine an optimal
value minimizing strategy to be used by the rational mortgage owner. The approach,
common to several other works in this area, is in close accordance with economic
theory, but several objections could be levered against it as a description of actual
prepayment behaviour.

We will start by restating the notation of the previous chapter with small adjustments.
is defined as the after-tax value of the underlying non-callable mortgage that is the

remaining after-tax payments of the mortgage assuming no prepayments, discounted
by the after-tax term structure. denotes the prepayment value, equal to current face

Bm

Wm
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value plus prepayment costs and costs associated with the term of notice. The hold-on
value of the mortgage is denoted . was calculated as the value of future after-tax
payments assuming an optimal strategy to be followed at all future decision dates.
Given optimal prepayment behaviour the borrower prepays, if , and continues
otherwise. This leaves the value of the mortgage equal to . The
critical yield was defined as the pre-tax yield to maturity of the underlying mort-
gage, where .

The exercise value of the prepayment option is defined as . This repre-

sents the present value of future after-tax savings, if the borrower prepays his old loan
and refinances with a new loan at the market rate of interest. The gain from
prepayment could become negative, if the borrower strikes the prepayment option
early. We finally define thegain from prepayment, , i.e. the ratio
between the exercise value and the value of the underlying non-callable mortgage. The
percentage gain from prepayment is perhaps the statistic most commonly used by the
advisory services of the mortgage credit institutions.

Note that when the borrower prepays his loan, we have , implying that the

exercise value of the prepayment option is equal to the value of the future prepayment
possibilities, . The gain from prepaying at the critical yield is therefore equal to
the borrowers estimate of the future value of the prepayment option as a percentage of
a similar non-callable mortgage. We shall denote the last number as thefuture gain
from prepaying, .

The first objection to the American option model is the amount of information needed
to calculate the future value of the callable mortgage . The borrower should be
aware of the precise terms of his mortgage, be acquainted with the zero coupon term
structure of interest rates, be able to specify the structure and volatilities of future short
term interest rates and finally perform the backwards pricing procedure.

Assume for a moment that all these prerequisites are at hand, except for some uncer-
tainty regarding the future interest rate volatility. Dahl(1991) obtains possible volatility
estimates of 10%, 14% and 16% from different sources and chooses 15% in his work
on MBBs. It is probably fair to argue that the average mortgage owner faces at least
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the same level of uncertainty. To see how uncertainty on volatility affects prepayment
behaviour, we have calculated critical yields for a 12% annuity mortgage56. The figures
are given in table 6.1.

Table 6.1: Critical yield and percentage gain from prepaying for different values of
volatility and time to maturity.

Critical yield Percentage gain
at prepayment

Time Volatility Volatility
to

matu- 12% 15% 18% 12% 15% 18%
rity (a) (b) (c) (d) (e) (f)

15 10.39 9.96 9.55 7.69 9.19 10.59
20 10.18 9.70 9.26 10.27 12.32 14.20
25 10.01 9.51 9.06 12.68 15.18 17.43
30 9.90 9.38 8.92 14.74 17.58 20.11
40 9.75 9.23 8.76 17.74 21.04 23.94
50 9.68 9.16 8.70 19.53 23.09 26.21

The uncertainty regarding future volatility has a rather large impact on critical yield,
especially for the longer term loans. Column (a)-(c) shows that a shift in perceived
volatility from 12% to 18% for a 30 year mortgage lowers critical yield from 9.90% to
8.92%. Column (d)-(f) shows the percentage gain from prepaying at the critical yield.
For the 30 year loan it is seen that when the borrower perceives a future volatility of
12%, he prepays at a gain of 14.74%, while he prepays at a 20.11% gain, if future
volatility is estimated at 18%.

Uncertainty regarding the interest rate process, the initial term structure, future tax
schemes etc., could all contribute to similar ranges of possible values for . But the
largest problem probably lies in the hidden assumptions of the entire concept of an
option adjusted mortgage value.

Vm
+

56 Calculations are done with a flat initial term structure and 8 steps per year. The borrower is
assumed to be a corporation with a tax-rate of 38%, a cost-rate of 0.5% and a 3 months term of
notice. As usual results are for time to maturities up to 50 years to give an impression of asympto-
tic behaviour.
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Consider the mortgage owner in the example above, having a 20 year annuity mort-
gage. Volatility equals 15% and the market rate is 11%. At these values ,

and . The gain from prepaying is 6.69%, while the future gain,
is equal to 8.51%. As the rational value minimizing borrower should con-

tinue his loan. But how does he cash in the future gain of 8.51% ?

The argument from standard option theory would say that if future value is larger than
exercise value, then the option should be sold at the market instead of being exercised.
As an alternative one could set up a delta-hedge strategy.

The prepayment option is embedded in a mortgage. Reselling the prepayment option
would normally imply that the borrower should sell the real estate being put as collat-
eral. Transaction costs alone prohibit this.

A delta-hedge strategy could be designed according to the refinancing alternative of
the borrower. The borrower has a long position in a call-option and a short position in
the underlying non-callable bond. Consider first a borrower, who wants to prepay in
order to refinance with a new non-callable loan at the market rate of interest. As an
alternative to prepaying above the critical yield he could add a short position in a
non-callable bond and a long position in the money market. The new combined posi-
tion should have an after-tax value equal to prepayment value and a delta equal to the
delta of a new non-callable loan. The arbitrage-free pricing principle ensures that the
combined position could be established with a net gain of . To keep the
position in line with the alternative the borrower should adjust his position, when
interest rates changes. If interest rates fall below critical yield, the borrower prepays
the mortgage and takes a new non-callable loan.

If the alternative is to prepay and refinance with a short term loan the borrower should
reverse the procedure adding a long position in a non-callable bond and short position
in the money market. The combined portfolio could be chosen with a value equal to
prepayment value and a delta of zero. The arbitrage-free principle would ensure a net
gain of . The position should be continuously adjusted as long as interest rates
are above the critical yield.

Consider finally a borrower, who wants to prepay and refinance with a new callable
mortgage with a market value of . The borrower should first perform an after-
tax valuation of the new mortgage resulting in the value of . If then the
situation is similar to the case with a non-callable loan as the alternative except for
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some adjustments due to the lower delta of the new callable bond. The borrower could
still obtain a net gain of by delta-hedging instead of prepaying. If then
a new situation arises, because the issuance of the new loan represents a separate
arbitrage possibility. If the gain from the new loan outweighs the
loss from early prepayment, and it could be argued that the borrower should prepay his
old loan at a loss. This implicitly assumes however that the arbitrage possibility is
temporary, and that the borrower faces restrictions, which unables him to gain without
giving up the old loan.

In principle the borrower can at any time lock in the future gain from prepayment
through delta-hedging. As in standard option theory the delta-hedge argument provides
a preference free valuation procedure. The opposite is also true however. If the bor-
rower cannot perform the delta-hedge strategy, then values obtained from an option
pricing procedure has little credibility.

There are several objections to the delta-hedge procedure. All three hedge strategies
increase gross loan volume for the individual borrower. Except perhaps for large
corporations the typical borrower would incur transaction costs as well as restrictions
on credit. Problems are aggravated due to the uncertainty regarding individual para-
meters and thereby the profitability of the strategy, cf. above. And neither the borrower
nor his advisors have access to the relevant computations.

Table 6.2 shows the percentage gain from prepaying (d) and the future gain from
prepaying (e) at different levels of the market rate of interest. The difference (f)
represents the gain from delta-hedging. For interest rates at or below 11% the differ-
ence between prepaying and delta-hedging is so small that even small transaction costs
would make delta-hedging more costly than prepaying. This invalidates the basic
argument behind the determination of the critical yield, namely that all borrowers
would wait to prepay if , because anyone who considered prepaying, would
prefer the lower value of the delta-hedge strategy. Instead we are left with a range of
possible prepayment points, depending on the borrowers subjective assessment of the
required gain. At interest rates above 11% delta-hedge could be an alternative to
prepaying, but most borrowers would probably not consider any of the alternatives,
due to the small size of the option value.

To summarize we have argued that the American option approach to prepayment
behaviour rests on rather weak foundations. It assumes a knowledge and a computa-
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Table 6.2: Comparison of percentage gain from prepayment to future gain from pre-
payment for different levels of non-callable yield to maturity.

After-tax
value of Gain Future

Yield  non- from pre- gain from
to callable Prepay Hold-on paying prepaying Difference

maturity mortgage value value % % in gain
(a) (b) (c) (d) (e) (f)

8% 125.27 100.84 101.47 19.50 19.00 -0.50
9% 118.90 100.70 101.09 15.31 14.98 -0.33

10% 113.03 100.56 100.20 11.04 11.35 0.31
11% 107.61 100.41 98.46 6.69 8.51 1.82
12% 102.60 100.27 95.91 2.27 6.52 4.25
13% 97.96 100.13 93.04 -2.22 5.02 7.25
14% 93.65 100.00 90.04 -6.77 3.85 10.63

tional ability unavailable to most mortgage owners, and the choice between prepay-
ment and a delta-hedge strategy is not a convincing one, due to the transaction costs
involved in the latter.

6.2  A stochastic model of prepayment behaviour

The American option models assumption of homogeneous borrowers implied a binary
prepayment function with either zero or full prepayment. This resulted in a discontinu-
ous price behaviour. As shown in the previous section the AO-model furthermore
assumed borrowers with full information and no transaction costs or credit restrictions.
In the real world we would expect heterogeneity among borrowers as well as uncer-
tainty concerning the future gain from prepaying.

The current section introduces a model with a continuous prepayment function. The
model is based on a stochastic ’micro-economic’ description of individual borrowers
behavior. Contrary to the AO-model borrowers are no longer assumed to behave
entirely rational. The AO-model will still be used however, to argue for the inclusion
of explanatory variables as well as the choice of shape for the prepayment function.
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Several authors have proposed models for US mortgage backed securities, in which the
borrowers are assumed to prepay stochastically as opposed to following a rational
exercise behaviour. Green and Shoven(1986), Schwartz and Tourus(1989) and
McConnel and Singh(1991) use the proportional hazard model by Cox(1973) assum-
ing that each borrower has a probability of prepaying depending on remaining time to
maturity and conditioned on the current state of the economy. By the inclusion of
explanatory variables these authors are able to model how mortgage age, interest rates,
seasonality etc. affect the prepayment rate. Richard and Roll(1991) use a more direct
regression model to the same effect. The US models are reviewed in chapter 7.

Gain from prepayment is used as the primary determinant of prepayments. As men-
tioned earlier this concept is readily available to the mortgage owner. Each mortgage
pool is assumed to consist of a large number of individual mortgages. At each decision
point mortgage owners observe the gain from prepayment . Conditioned on this gain
a fraction of all borrowers decides to prepay. Note that is equal to the
prepayment function introduced in section 3.3. The exact shape of the prepayment
function is of course an empirical matter, but we would expect the prepayment func-
tion is monotonously increasing starting at zero for very low values of and converg-
ing toward one for large values of . Continuous distribution functions are an obvious
class of functions satisfying these properties. The use of a distribution function will
furthermore allow an interesting ’micro-economic’ heterogeneity-interpretation of the
model as shown below.

We assume, with no claim of originality that the prepayment function can be described
by a normal distribution function, , with mean and a standard deviation of

. As shown in the next chapter this leads to an empirically tractable model, which can
be tested on available prepayment data.

As one obvious interpretation of the model assume each individual borroweri to have
a required gain, , which induces prepayment. If the borrower prepays,
otherwise he waits for a further fall in interest rates. Assuming the required gain to be
normally distributed across the population of borrowers with mean and standard
deviation implies that the fraction of borrowers who prepay at a gain of will equal

. In this model heterogeneity with respect to required gain leads to partial
prepayment at each decision date, as opposed to the binary prepayment function of the
American option model.
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A second interpretation could be that all borrowers are homogenous, but their assess-
ment of future gain are subject to uncertainty due to all the factors listed in the
previous section. If the individual valuations at a given point in time are normally
distributed, a similar prepayment function would be appropriate.

The rest of this chapter will use the heterogeneity interpretation with a normally
distributed required gain. The normal distribution function could of course be substi-
tuted by almost any continuous distribution function.

The price of the MBB can be found by the general approach described in section 3.3.
At each date-event one computes the gain from prepayment . The
values and at each date-event can be efficiently updated as part of the back-
wards pricing procedure. For after-tax calculations we use the arbitrage-free valuation
approach described in section 4.3. The gain from prepayment is inserted into the
assumed distribution function resulting in a prepayment rate . The value of the
bond at a single date-event is given by

(6.1)

with computed by the backward equation (3.20).

The prepayment rate is now a continuous function of the market rate of interest and
other parameters of the model. The discontinuities present in the American option
model are therefore absent in the present model even though and will in general
be different at the decision date.

As a one-plot-fits-all illustration of the model we have plotted the price of a 12%
coupon 20 year MBB as a function of the market rate of interest57. The price of a
similar non-callable bond, , and the prepayment value, , has been plotted for
reference. To elaborate further the lower part of the plot shows the initial after-tax
gain, , and the resulting prepayment rate.

gm ≡ (Bm − Wm)/Bm

Bm Wm

λ(gm)

V = λ(gm) ⋅ W + (1− λ(gm))V+ ,

V+

V+W

B W

gm

57 Borrowers are assumed to have a taxrate of 50% with non-deductable costs of 0.5% and a 3
months term of notice. The mean value of the required gain is a constant equal to 15 percent
with equal to 3 percent. Interest rate volatility is set at 10% and we use 8 steps per year.
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Figure 6.1: An
illustration of the
prepayment
model.

As expected prices vary continuously with the market rate of interest. At market rates
above 14% prepayment is still a distant possiblity and the MBB price are close to the
price of a similar non-callable bond. As interest rates fall the gap between the MBB
and the non-callable bond widens due to the increased probability of prepayment in the
near future. Between 11 and 10% some borrowers start to prepay their loans and at a
market yield of 10% the MBB reaches its maximum value of 104.74. Between 10 and
8% the MBB exhibits negative duration because the gain in value of the underlying
non-callable bond is offset by the increased prepayment risk. At interest rates below
8% nearly all borrowers prepay their loans with 3 months term of notice, and the value
of the MBB equals the value of a three months 12% bond.

Large differences in prepayment behaviour between borrowers with different tax
schemes or different loan sizes are unlikely to be described by a normal distribution. In
these cases one can group borrowers according to basic parameters and apply the
valuation approach for each group individually. The resulting value of the bond can be
found as a weighted average. For an example se section 6.5 below.

Note that the American option model could be seen as a limiting case of the current
model with a standard deviation of zero and a mean required gain equal to the gain
obtained at the critical yield. This analogy will be used repeatedly in section 6.3, when
we discuss how a rational borrower would adjust his required gain to changes in the
economic environment. But although rational prepayment behaviour presents a starting
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point, it is the actual behaviour which is of interest to the investor. In the remaining
part of this section we discuss a number of reasons, why borrowers prepay at non-op-
timal gains, and how these effects could be presented in the present model.

The most important reason was given in the previous section noting that the entire
concept of a single optimal gain was invalidated by transaction costs, computational
problems and uncertainty of future volatility and term structure estimates. Incorporat-
ing these factors into an American option model would leave us with a large range of
possible prepayment point, neither of which could be deemed the most correct to use.
In the required gain model this uncertainty is simply modelled through an appropriate
choice of .

The Danish mortgage market is highly regulated and restrictions on credit could make
borrowers focus more on short term net cash flow as opposed to the long term present
value gain. Figure 6.2 illustrates two important examples. A change of legislation in
1986 forced all new mortgages to be issued as so-called mix-loans with 40% being
issued as serial bonds and 60% as annuity bonds. Before 1986 all mortgages were
issued as annuities. The curve labelled ’Annuity 12%’ shows annual after-tax cash
flow of a 30 year 12% annuity bond with a face value of 500.000 DKK. At market
rates of 9% this bond could be prepayed with a present value after-tax gain of 8.53%
net of transaction costs. After prepayment the borrower would normally take a new 30
year 9% mix-loan, labelled ’Mix-loan 9%’. Despite the gain in present value the
borrower faces increased costs on his mortgage for the first few years. Borrowers with
mix-loans issued after 1986, like the one labelled ’Mix-loan 12%’ on the figure, would
face a uniform reduction in payments. To incorporate short-sighted liquidity concerns
into the present model we could assume a larger required gain for borrowers with
annuity mortgages relative to the mix-loan mortgage owners.

Borrowers, who prepayed under the Danish mortgage system up to 1992, were legally
bound to issue a new loan with time to maturity less than or equal to the old loan.
Switching to longer term loans was only allowed in connection with a sale of the
property. In May 1992 the credit restrictions were eased, and provided sufficient
collateral homeowners could for the first time prepay and take alonger term loan. This
has induced a large amount of borrowers to prepay shorter term loans like the 10% 15
year loan with a cash-loan rate of 16% shown in the figure. As seen the borrower gains

σ
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Figure 6.2: Annual

after-tax cash flow from

different mortgages.

Tax-rate 50%, face

value 500.000 DKK.

The market rate of

interest 9%.

a reduction in after-tax payments for the next 15 years, but in present value terms he
actually looses 6.60%58. This change of legislation could be incorporated as an
increased probability of prepaying at a negative gain.

Turnover of houses have similar effects. As opposed to the typical American mortgage
system the Danish mortgages are contractually assumable to a new owner and no
forced prepayment takes place at sale. Most houses are advertised on first years pay-
ments after tax however, which gives some incentives to prepay short term loans
perhaps at a net present value loss and refinance with longer term loans. For a
discussion of the connection between turnover rates and the rate of prepayments see
Mouritsen and Møller(1989).

A kind of money illusion may exist, which induces corporate owners of large mort-
gages to prepay at lower gains than private houseowners, simply because a 4% gain on
a 100 million DKK loan looks more impressive than a 10% gain on a 200.000 DKK
mortgage. To account for these effects we should use a lower gain for larger mort-
gages. Likewise one would not expect a very small mortgage of say 25.000 DKK to be
prepayed irrespective of the possible gain.
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58 Sources at one of the credit institutions estimates that more than 50.000 mortgage owners have
made inquiries about longer term loans in the first few month after the bill was passed. The final
figures have not been collected but a conservative estimate would be that they represents outstand-
ing mortgages of 5-10 billion DKK. A neighbourhood effect could make this type of prepayments
rather epidemic as large housing areas build in the 70’ties have been financed with the same kind
of mortgages.
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In recent years there has been an active marketing of prepayment services from banks
and mortgage institutions. The latest offerings are loan watch services, in which the
borrower contractually allows the credit institution to prepay as soon as certain condi-
tions are met. The conditions are normally put in terms of a required gain, which could
be fed directly into the current model. Regrettably no public information exists on the
number and gain distribution of these contracts, but it would be a fair bet to assume
that a high proportion of watched loans could be modelled as a reduction in the
standard deviation and perhaps the mean of the required gain distribution.

Some MBBs have a very large proportion of government controlled loans, especially
in connection to loans issued by social housing associations. The implication on this
was seen December 16, 1991, when the Ministry of Housing announced the simulta-
neous prepayment of all loans issued in 12% bond series. In the present model this
kind of behaviour could be modelled as a group of borrowers with a very small , but
the mean of the distribution is unknown a priori. Other examples exist in which a
single borrower controls a large proportion of an outstanding loan volume and these
cases should be singled out if possible and handled with care.

To summarize we have set up a model in which the rate of prepayments depends on
the observed gain from prepayment through a continuous distribution function. As
opposed to the American option model this results in smooth behaviour of prices and
the model could easily cope with the uncertainty and perhaps even irrationality, which
characterizes actual prepayment behaviour.

6.3  Price-behaviour

The pricing model for the MBB is complicated and we are not aware of any closed
form solutions, which would allow a formal mathematical analysis. This section there-
fore contains a sensitivity analysis of the model to assess the impact of different
parameters on the price of MBBs. Most of the interactions are perhaps quite obvious
from a theoretical viewpoint, but they are stated here for reference. Our basic scenario
and the choice of bonds is similar to the current market situation and numerical
magnitudes should therefore be of interest. The prepayment model resembles the paper
by Jakobsen(1992), but that paper used a binomial process for the yield to maturity.
The present papers use of an arbitrage-free term structure model makes it possible to
study how the shape of the initial term-structure affects prices.

σ
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To visualize the wealth of interactions we have choosen three 20 year annuity bonds
with quarterly payments and coupon rates of 9, 10 and 12%. These values represent
some of the largest MBBs in the Danish market. To study the impact of the cash-loan
system a 20 year 12% annuity bond with a cash-loan rate of 14% is included59.

The basic term structure scenario assumes a flat yield curve at 10% annual com-
pounded, future short term interest rate volatility of 10% and 8 steps per year. Bor-
rowers are assumed to have a tax-rate of 50%, a 3 months term of notice and a cost
rate of 1%. Their prepayment behaviour is described by a constant mean required
after-tax gain of 12% with a standard deviation of 3%. Starting values for the four
bonds are shown in table 6.3. The 9% mortgages have a negative gain from prepay-
ment and prepayments at the initial yield of 10% only occurs in the two 12% bonds.
With reference to option valuation terminology we shall refer to the 12% bond as
being in-prepayment, the 10% and the 12/14% is at-prepayment and the 9% is out-of-
prepayment.

Table 6.3: Initial values for sensitivity analysis.

Mortgage holder: 9% 10% 12% 12/14%

After-tax value 97.16 101.80 111.52 107.88
Prepayment cost 100.90 101.02 101.27 101.27
Prepayment gain (%) -3.85 0.76 9.20 6.13
Prepayment rate (%) 0.00 0.00 17.52 2.53

Bond investor: 9% 10% 12% 12/14%

Yield of non-call 10.00 10.00 10.00 10.00
Price of non-call 95.55 102.48 116.90 116.90
Prepayment value 99.84 100.09 100.57 100.57
Price of MBB 94.27 99.00 102.23 105.29

59 The cash-loan system refers to bonds issued before 1986 cf. section 5.3. A typical cash-loan would
have semiannual payments, 5 months term of notice and a maturity less than 20 years but to
compare the results we have assumed the same basic parameters as the three bond-loans.
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Figure 6.3 gives the prices as a function of the market rate of interest. At a yield of
10% the two 12% bonds prices are at their maximum. The 12% bond-loan will not
reach much above 102 while the 12/14% cash-loan goes 3 price points higher because
the tax-advantages of the cash-loan system reduces the borrowers gain from prepay-
ment. At higher interest rates the two 12% bonds converge. Should any 12% bonds
still be on the market, when interest rates go below 8%, their prepayment rates would
be close to 100% ,and their prices lower than prices of 9 and 10% bonds.

Figure 6.3: Prices

of four 20 year

MBBs as a function

of the noncallable

market rate of

interest.

The following sensitivity plots show the prices of the MBBs as functions of different
parameters. For most plots the price of the similar non-callable bond given in table 6.3
stays constant. If the prepayment option gets far out of the money, the MBB-price
reaches this upper limit. The corresponding prepayment value will likewise act as a
lower boundary for very high rates of prepayment.

The assumption on borrowers behaviour is given by the mean and standard deviation
of required gain. Generally a higher mean required gain lowers prepayment rates and
the MBB-price increases. An increase in average gain has most effect on the 12%
bonds, due to high value of their prepayment option. Bonds, in which the prepayment
option is out-of-the money, like the 9 and 10% bonds, are only affected to a lesser
degree. At average gains of 17% the 9 and 10% bonds trade close to their non-call
values.
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Figure 6.4: Prices

of four MBBs for

different values of

mean required gain.

For very low values of average gain, there is a positive prepayment rate, even for the
low coupon bonds. For 9 and 10% bonds prices are below par and the prospect of
prepayment now or in the immidiate future will increase rather than decrease values.
This price behaviour is perhaps a weakness of the model. In practice no mortgage
owner would prepay at par, when he could purchase bonds below par and cancel the
loan through the delivery option as discussed in section 5.460. For the 12% bonds,
prepayment at negative gains is a definite posibility, especially for the liquidity reasons
discussed in the previous section.

The standard deviation of required gain measures the degree of heterogeneity among
otherwise similar borrowers. Reasons for individual borrowers to differ on required
gain was given in the previous section. As heterogeneity increases more borrowers will
prepay at higher interest rates, and this will ceteris paribus decrease the value of the
MBB as shown in figure 6.5. The change in has most effect on the 12/14% cash-
loan, which was close to prepayment. The 12% bond-loan with high prepayment rates
is less influenced, as are the 9% and 10% bonds, which are rather far from
prepayment.
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60 The prepayment option could be incorporated in the model along the lines of section 5.4, but given
reasonable values of the prepayment function, nothing would be gained by this complication.
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Figure 6.5: Prices of

four different MBBs as a

function of the standard

deviation for required

gain.

The sensitivity to was computed with the two 12% bonds at their maximum values.

As interest rates falls below 10%, 12% MBB-prices falls and one could wonder, if the
impact of reverses, because a smaller leads to a steeper descent of the MBB-price.

Figure 6.6: Prices as a

function of market yield

for different values of .

To study the sign of for all levels of interest rates, we have calculated prices of

the 12/14% for equal to 1% and 3% respectively. Barring a minor range around 8%
yield it is seen from figure 6.6 that an increase in uniformly leads to a fall in the
MBB-price. The steeper descent of the 1%-price is matched by a higher value for its
maximum. Prices thus increase ceteris paribus with a decrease in heterogeneity.
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Some reservations should be mentioned. If the mean required gain is unknown a

priori, as in the above-mentioned case of the Ministry of Housings collective prepay-
ment of all 12% loans, then an alternative model - perhaps like the American option
model - would be more appropriate. If secondly borrowers are divided into separate
identifiable groups, then the assumption of a single normal distribution should be
replaced with the grouping approach of section 6.5.

Figure 6.7: The impact

of the tax-rate on MBB-

prices.

In section 5.3 it was argued that an increase in the marginal tax-rate of borrowers
should lead to a fall in the critical yield, due to the tax-advantages lost by prepaying. In
the current model taxes affect prepayment rates through a reduced gain from
prepaying, and figure 6.7 shows the resulting impact on prices for tax-rates in the
range from zero to 65%61. Most borrowers are either corporations with tax-rates
around 35% or private households with tax-rates between 50 and 60%62. Below 55%
the exact tax-status of the borrowers seems to matter rather little at least for the three
bond-loans. The 12/14% cash-loan enjoys a special tax-advantage and a knowledge of
the exact tax-status of borrowers will be important.
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61 Foreign readers should note that we are not trying to prove a limiting result. A small group of
persons with large personal wealth face marginal tax rates above 68% on interest payments.

62 The low precision on these figures reflects that tax-rates and tax-systems for corporations have
been changed several times within the last few years. Marginal tax rates for private households
varies cross country and it differs according to the sign of personal net wealth.
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Figure 6.8 displays the MBB-value as a function of time to maturity. Prices of corre-
sponding non-callable bonds are included for reference. With a flat yield curve of 10%
the prices of non-callable bonds are dragged towards 100 as time to maturity
decreases. The MBB-prices behave rather differently. If borrowers demand a 12%
average gain irrespective of the time to maturity, then the prices of 30 year bonds will
be highly affected by prepayments, while 10 year bonds are close to the corresponding
prices of the non-callable.

Figure 6.8: Prices as a

function of time to

maturity assuming a

maturity independent

required gain of 12%.

If borrowers receive proper advise, we would expect a lower mean required gain for
the shorter maturities. This behaviour is implicitly assumed in the American option
model, where the borrower make a rational decision comparing current gain from
prepayment with possible future gain. For comparison we have calculated the same set
of values for the American option model as shown in figure 6.9 below.

Assuming rational behaviour is seen to have a dramatic effect. In the AO-model
MBB-prices are almost constant accros maturities and the prepayment option is
valuable even for short maturities. To see, if pricing results of the American option
model could be replicated by the RG-model, the model is changed to allow for a
maturity dependent mean required gain (MDRG). The MDRG-model assumes that the
mean and standard deviation of the required gain distribution decreases linearly with
remaining time to maturity ending at zero at maturity. The results of the MDRG-spe-
cification is compared to the AO and the RG prices in table 6.4. In the
MDRG-calculation a 12% gain and a 3% standard deviation with 20 years remaining
time to maturity is chosen to compare easily with the fixed distribution of the
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Figure 6.9: Prices

implied by the American

option model as a func-

tion of time to maturity.

RG-model. In the MDRG-model a 30 year bond will thus start at 18% gain with a
4.5% standard deviation. With 10 years remaining the figures will be 6% and 1.5%
respectively.

For the 20 year bonds the MDRG-model has the same initial gain distribution as the
RG-model, but the assumed fall in mean required gain increases future prepayment
rates and the MDRG-prices are therefore lower. The difference is rather small, how-
ever, and typically below one price point. The main difference between the MDRG-
and the RG-model occurs for bonds of longer or shorter maturities. Here the
MDRG-model leads to a price behaviour which closely resembles the AO-model63. We
therefore conclude that a very simple change in the specification of the required gain
model could cope with one of the most important lessons learned from the study of
rational borrowers behaviour. In this respect the required gain model allows for "ra-
tional" as well as irrational behaviour. What borrowersactually do is an empirical
question cf. the discussion in chapter 7.

The remainder of this chapter sticks to the RG-model with a fixed distribution of mean
required gain, but the maturity dependent version will be used in the next chapter.
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63 A closer match to AO-prices could be obtained by the use of a lower required gain at 20 years. But
the relevant prices to match will of course be an empirical question. The strength of the MDRG-
model is that the parameters can be chosen to match observed prices and prepayment rates.
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Table 6.4: Comparison of pricing results as a function of time to maturity for different
models.

Maturity Price of
Fixed  depen- non-

Years mean American dent callable
to required option  mean bond

maturity gain model required
gain

9% annuity 10 97.21 96.59 96.87 97.28
15 95.89 94.73 95.13 96.32
20 94.27 93.17 93.68 95.55
25 92.68 91.93 92.51 94.96
30 91.44 91.10 91.60 94.50

10% annuity 10 101.13 99.31 99.63 101.51
15 100.53 98.23 98.97 102.05
20 99.00 97.62 98.24 102.48
25 97.63 97.01 97.62 102.81
30 96.73 96.42 97.16 103.06

12% annuity 10 106.94 101.36 101.52 110.24
15 104.42 101.27 101.79 113.97
20 102.23 101.20 101.93 116.90
25 101.28 101.14 102.10 119.13
30 100.91 101.10 102.34 120.76

12/14% annu- 10 109.19 103.46 104.12 110.24
ity 15 108.77 102.70 104.60 113.97

20 105.29 102.46 104.19 116.90
25 102.78 102.28 103.81 119.13
30 101.55 102.15 103.65 120.76

An increase in the future volatility of short term interest rates increases the future
range of pre- and after-tax prices of the non-callable bond. The likelihood of
prepayment as well as the loss to investors in case of prepayment is therefore
increased. This will lead to a fall in MBB-prices as shown in figure 6.10. The effect is
largest for at-prepayment bonds like the 10% and 12/14%. For the in-prepayment 12%
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Figure 6.10: Prices of

mortgage backed bonds

as a function of interest

rate volatility.

bond most borrowers will prepay in the near future irrespective of future volatility, and
the effect is thus smaller. The same goes for the out-of-prepayment 9% bond, for
which prepayment is still a distant possibility.

The volatility results from the RG-model are quite similar to the results expected from
an American option model. Note however that mean required gain is unaffected by the
change in volatility. In the AO-model an increased volatility leads to a higher future
value of the prepayment option, which implies that borrowers would prepay at a lower
critical yield. To incorporate this kind of rationality in the RG-model, higher values of
mean required gain should be used for higher volatilities. Rational adjustment would
thus once again dampen the price effect of volatility changes.

An interesting feature unique to the arbitrage-free term structure models is the direct
way, in which the initial term-structure determines the stochastic process of future
interest rates. This allows us to study how MBB-prices are affected by the shape of the
initial term-structure.

Consider a range of linear initial yield curves with slopes between -0.25% and 0.25%
corresponding to a maximum spread between the 0 and 20 year yield of percentage
points. For each choice of slope an intercept value is computed, which ensures a 10%
yield to maturity of a 20 year annuity bond. Corresponding slope and intercept values
are given in table 6.5 below. By construction a change in slope has no effect on
non-callable bond prices, but there may be an effect on MBB-prices as illustrated in
figure 6.11. Besides the four bonds used above we have calculated results for a 10%
bond with term of notice and tax-rate equal to zero.
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Figure 6.11: The MBB-

price effect of changes

in term structure slope

for a constant non-call-

able yield to maturity

Despite the constant yield to maturity of non-callable bonds there is a clear positive
dependency between MBB-prices and the slope of the initial term structure. An
increase in spread between long and short term yields decreases the value of the
prepayment option and vice versa.

Table 6.5:The dependency of term structure shape on MBB prices.

Term structure Tax 0%, 20 year annuity bonds, tax-rate 50%
coupon coupon rate:

Slope Inter-
cept 10% 9% 10% 12% 12/14%

-0.25 12.85 94.36 90.65 94.29 99.50 99.78
-0.20 12.27 94.96 91.66 95.38 99.96 100.81
-0.15 11.69 95.61 92.52 96.42 100.47 101.90
-0.10 11.12 96.28 93.24 97.38 101.02 103.03
-0.05 10.56 96.96 93.81 98.24 101.61 104.17
0.00 10.00 97.63 94.27 99.00 102.23 105.29
0.05 9.45 98.28 94.61 99.65 102.89 106.39
0.10 8.91 98.88 94.88 100.21 103.57 107.45
0.15 8.37 99.44 95.08 100.67 104.27 108.45
0.20 7.84 99.94 95.23 101.06 104.97 109.39
0.25 7.32 100.39 95.34 101.37 105.68 110.26
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In section 4.3 we showed that the initial after-tax value of a non-callable annuity bond
was almost unaffected by a change in slope, provided yield to maturity stayed constant
accross term structures. The prepayment costs are not constant however, and a simple
explanation of the slope dependency could therefore be that the term of notice causes
prepayment costs to rise with a fall in short term interest rates. This reduces borrowers
gain from prepayment and increases the value of the MBB in case of prepayment. Both
effects should tend to increase MBB-price with increasing slope. But as seen from the
table the slope effect is present even for the bond with a zero term of notice. For this
bond initial prepayment rates are entirely unaffected by the change in slope.

A heuristic explanation could be that callable bonds are ’shorter’ than non-callable
bonds. An increase in slope increases prices of short term bonds relative to long term
bonds which explains the slope dependency. The heuristic argument implicitly
assumes that average maturity of the MBB stays constant across term structures.

For a full explanation one must consider the dynamics of the binomial term structure
process. Some evidence is given in figure 6.12 for initial slopes of -0.25, 0 and 0.25%.
Figure 6.12-a shows the initial term structures, and as argued above the initial prepay-
ment rates are almost equal for all three cases. But future prepayment rates are highly
dependent on the initial slope. An upward sloping initial term structure implies that
future yields should on average be above current yields. This leads to lower future
prepayment rates. Investors include these expectations in their valuation of the MBB,
which explains why out-of-prepayment MBBs converge toward their non-callable
values as the slope increases. In-prepayment bonds like the 12% will still be sold at a
discount due to high initial prepayment rates.

A downward sloping initial yield curve will likewise imply average future yields
below current yields, and therefore the investors expect higher prepayment rates rela-
tive to our basic scenario with a flat yield curve. Figure 6.12 (b)-(d) shows the 5 year
forward term structures at the lower quartile, median and upper quartile of the short
term interest rate distribution. In all three cases forward term structures for the upward
sloping yield curve lie above the ones for the downward sloping yield curve.

A constant mean required gain was used throughout the example. In the AO-model an
increase in slope reduces the future value of the prepayment option and borrowers
react by prepaying earlier. If we want this level of rationality in the RG-model, a
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(a) (b)

(c) (d)

Figure 6.12: (a) Initial yield curves of different slope. (b-d) Forward yield curves at
lower quartile, median and upper quartile of short term interest rate distribution after
5 years.

higher mean required gain should be used for an upward sloping yield curve and vice
versa. Introducing rational behaviour would thus make MBB prices less dependent on
initial slope.

To summarize we have presented a sensitivity analysis of the mean required gain
model. It was shown how MBB-prices depended on the yield level, the required gain
distribution, borrowers tax rate, remaining time to maturity, and the volatility and
slope of the initial yield curve. The results were easily explainable, and hopefully they
provided a deeper insight into the pricing model. References to the American option
model was given throughout, and in general it was argued that the MBB-prices of the
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AO-model was less sensitive to parameter changes, because the change in rational
borrowers prepayment behaviour would typically counteract the change in the
investors valuation of future cash flows.

The choice between the RG-model and the AO-model is not an obvious one. From a
computational point of view the two models are equivalent, but the AO-model suffers
from discontinuity problems as shown in section 5.5. On the other hand it provides a
full endogenuous determination of prepayment behaviour consistent with rational
behaviour. The RG-model allows the description of rational as well as irrational beha-
viour, and one can easily analyse, how observed prepayment behaviour affects prices.
On the negative side the prepayment distribution must be user-supplied, and to
incorporate some level of rationality, the distribution should at least be made depend-
ent on time to maturity.

6.4  Duration measures

The fluctuation of interest rates is the primary source of risk for fixed payment bonds.
Although MBB-pricing must cope with a vast amount of prepayment uncertainty as
well, interest rate risk measures like duration and convexity will still be valuable for
the investor. This section starts with a short review of general duration measures for
non-callable fixed-payment bonds. In the context of an arbitrage-free term structure
model, these measures are easily extended to bonds with embedded options, like the
MBBs. In-prepayment MBBs are often viewed as a direct substitute for short term
non-callable bonds, and we compare the return behaviour of these bonds to illustrate
possible pitfalls.

Let P denote price andy the continuously compounded64 yield to maturity of a
non-callable bond with payments at time . The Macaulay/Redington
(MR) duration measure is defined as

(6.2)

The MR-duration measure is often viewed as a weighted average maturity of the bond,
but its practical value comes from the relation

bt t = 1, …, N

DMR = 
∑

t = 1

N

t ⋅ bte
−y ⋅ t

/P

64 Duration and convexity could be defined using discrete compounding as well but continuously
compounding simplifies most formulas.
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(6.3)

which states that duration measures the security’s relative price sensitivity to yield to
maturity. As discussed in e.g. Brennan and Schwartz (1982) the widespread use of
MR-duration as a risk measure implicitly assumes a single factor model with parallel
shifts in a flat yield curve as the single source of interest rate risk65.

Following the paper by Fisher and Weil (1971), Bierwag and Kaufman(1977),
Khang(1979) and others have proposed more general duration measures, involving
additive and multiplicative shifts in non-flat yield curves. In the present analysis we
shall confine ourselves to a subset of these duration measures.

We assume that changes in t-period zero coupon yield, , can be described by a

function of time to maturity multiplied by a scalarh. Each value ofh implies a
new yield curve . The scalarh can be viewed as the degree of change
in the direction given by . The bondpriceP will change to

. For each choice of shift-function, , the corre-
spondingH(t)-duration measure is defined by

(6.4)

where denotes the partial derivative of with respect toh66.

is thus the relative sensitivity of price to an infinitisimal yield curve shift of type
H(t). We shall refer to these general duration measures as generalized Fisher-Weil
durations to emphasise their dependency on the initial zero coupon yield curve.

∂P/∂y
P

= −DMR

Rt

H(t)
Rt(h) = Rt + hH(t)

H(t)
PH(h) = ∑ bt exp(−t ⋅ (Rt + h ⋅ H(t)) H(t)

DH =
PH(0)

P
= ∑

t = 1

N

t ⋅ H(t) ⋅ bt ⋅ e
−Rtt/P

PH(h) ≡ ∂PH(h)/∂h PH(h)

DH

65 Ingersoll, Skelton and Weil(1978) and Cox, Ingersoll and Ross(1979) have shown that the diffe-
rent duration measures implies different restrictions on the possible stochastic behaviour of interest
rates.

66 The cumbersome use of the scalarh is needed to allow a formalization of a partial derivative with
respect to the shift-function H(t). A similar approach can be found in Nielsen(1987).
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Setting corresponds to the parallel or level shift in the initial yield curve

introduced by Fisher and Weil(1971) . From (6.4) we get the level-duration measure
as67

(6.5)

Likewise a change in slope corresponds to which leads to slope-duration

measure, , given by

(6.6)

Duration measures for non-linear shift can be found by a simple redefinition of .

Setting the analogous duration measure can be found by

(6.7)

Knowledge of and can thus be used to compute the sensitivity of bond value to

any linear shift in the initial yield curve. For discrete linear shifts one can use the
approximating formula

(6.8)

where and is the assumed change in level and slope respectively.

To extend the Macaulay/Redington duration measure to a portfolio of bonds one must
in principle recompute the duration for the full aggregate cash flow of the portfolio due
to the well known non-additiveness of yield-to-maturity. The generalized FW-duration
measures are far simpler and the duration, , of a portfolio can be found by a simple
weighted average of individual duration measures

(6.9)

H(t) ≡ 1

DL

DL = ∑
t = 1

N

t ⋅ bt ⋅ e
−Rt ⋅ t

/P

H(t) ≡ t

DS

DS = ∑
t = 1

N

t2 ⋅ bt ⋅ e
−Rt ⋅ t

/P

H(t)
H(t) ≡ α + βt

Dα,β = αDL + βDS

DL DS

∆P/P ≈ DL∆L + DS∆S

∆L ∆S

DH
p

DH
i

DH
p = ∑ xi ⋅ DH

i

67 In the following we use subscript L (level) and S (slope) to indicate and respect-
ively.

H(t ) ≡ 1 H(t ) ≡ t
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where denotes the value-share of bondi in total portfolio value.

Duration measures can be seen as a first order approximation to the underlying price/y-
ield relationship. As such it applies only to small shifts in the yield curve. To analyse
somewhat larger shifts one could use a second-order approximation. Assuming

, corresponding to a parallel shift in the initial yield curve, we get the follow-
ing second order Taylor approximation to the relative change in price from a level
change of :

(6.10)

denotes the second partial derivative of price with respect to a level shift and

is called theconvexityof the bond. Equation (6.10) shows that if we
compare two bonds with equal level-duration, then the bond with the highest convexity
will gain most from a fall in the level of interest and it will loose less from an increase
in the level of interest. This apparently attractive property has lead many bond
investors to prefer high convexity bonds.

By direct calculation of the second partial derivative the convexity measure can be
expressed by the well known formula

(6.11)

Comparing to equation (6.6) we get the interesting result that slope-duration equals
convexity for fixed cash-flow bonds. Investors pursuing gains from convexity will
therefore maximize their exposure to losses from an upward shift in yield curve
slope68.

xi

H(t) ≡ 1

∆L

∆P
P

≈ −DL ⋅ ∆L +
PLL

2 ⋅ P
⋅ ∆L2 ≡ −DL ⋅ ∆L +

CL

2
⋅ ∆L2

PLL

CL ≡ PLL/P

CL =  ∑
t = 1

N

t2 ⋅ bt ⋅ e
−Rtt/P

68 The exact equivalence is due to the use of continuously compounding. For discrete compounding
small deviations occur. To give a heuristic explanation duration decreases with a rise in yield level
because the value of long term payments decrease relative to short term payments. Convexity

measures this rate of change in duration through the relationship . Bonds with high

convexity have a large dispersion of payments which results in a large change in duration. But
these bonds will also be most affected by a change in slope.

DLL/P = DL
2 − CL
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For fixed cash-flow bonds the generalized duration measures can be found from the
above-mentioned formulas. For MBBs and other securities with interest dependent
cash-flows duration measures must be calculated by numerical methods. We exploit
the fact that arbitrage-free term structure models price bonds and related instruments
relative to the initial term structure. To obtain a generalized duration measure the
model is recalibrated for a shifted yield curve and a new valuation is done
resulting in the ’shifted’ price 69. The approximated duration measure is given by

(6.12)

Convexity measures requires the numerical calculation of a second order partial
derivative. The initial yield curve is shifted downwards by-h and the approximated
convexity measure is given by

(6.13)

The following figures show how level-duration, slope-duration and level-convexity
depends on the level of an initial flat yield curve. The values are computed for the four
MBBs analysed in the previous section as well as a 20 year non-callable annuity bond.
As expected the non-callable bonds show positive convexity throughout and level- as
well as slope-duration increases with a falling level of interest.

The MBB duration measures display a much more complex pattern. At high rates of
interest the MBBs behave like their underlying non-callable bond. But as interest rates
fall the MBB-duration measures fall below durations for the non-callable bond and
very soon we get a decrease in price sensitivity as yields decrease. Interestingly this
happens long before prepayment becomes imminent. The 12% and the 12/14% bond
with the highest prepayment risk will of course be the first to diverge from the
non-callable bond.

Rt + h ⋅ H(t)
PH(h)

DH =
(P − PH(h))

h ⋅ P

CH =
PH(h) + PH(−h) − 2 ⋅ P

h2 ⋅ P

69 For each duration measure we need a full calibration of the shifted lattice as discussed in chapter 3
plus a ’shifted’ valuation for each security. The calibration procedure is however common to all
securities and the resulting parameters for the shifted short rate process can be stored and reused.
When calculations are done for several securities only the valuation step counts, but still computa-
tion times triples if two duration measures is needed on top of the bond valuation itself. After som
experimentation we have set which corresponds to a 10 basis point level-shift (0.1
percentage point). Numerical instability of convexity measures occurs when .

h = 0.001
h = 0.0001
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Figure 6.13:

Figure 6.14:

As seen in the previous section MBB-prices reach a maximum which corresponds to a
level-duration of zero. Below this point there is a region of negative duration with
MBB-prices moving against non-callable bond prices. Finally, at very low levels of
interest rates the MBBs reach full prepayment and level-duration equals the time to the
first settlement date.

Duration measures become very volatile around the maximum MBB-price and given
the uncertainty on prepayment behaviour they should be used for pedagogical purposes
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mostly70. The duration measures for at-prepayment or out-of-prepayment MBBs are
probably much more useful especially to owners of large portfolios who need a
measure of aggregate yield sensitivity.

Figure 6.15:

The plot of level-convexity reflects the high volatility of level-duration to an even
higher degree. The MBBs generally have a lower convexity than their non-callable
counterpart. For large regions of yield levels the MBBs have the undesirable property
of negative convexity, which imply that duration decreases when interest rates falls
and duration increases with a rise in interest rates. Capital gain will thus be smaller and
capital losses larger for a MBB relative to a non-callable bond of similar duration.

As a further implication of the interest rate dependency of MBB cash flows it is seen
that no equality between slope-duration and level-convexity exists for MBBs except at
very high levels of yield71.
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70 The values were calculated with prepayment rates described by a normal distribution function. A
right-skewed distribution would result in a slower increase toward full prepayment and perhaps a
less volatile behaviour of in-prepayment duration and convexity measures.

71 The generalized Fisher-Weil durations applies an exogenously specified shift to the current yield
curve. These shifts may be different from the arbitrage-free shifts allowed by the assumed stochas-
tic process for the short term interest rate. Instead one could calculate the sensitivity of the
individual securities to changes in the short term rate of interest. Let denote the price of a
security at date-event and let be the corresponding annualized short term interest rate.
The arbitrage-free (AF) duration measure is defined as:

AF-duration can be viewed as a special kind of generalized Fisher-Weil duration with an arbitrage-

V(n,s)
(n,s) r (n,s)

DA(n,s) = 



V(n + 1,s) − V(n + 1,s + 1)
r (n + 1,s + 1) − r (n + 1,s)




/V(n,s)
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Figure 6.16:

The analysis of MBB duration measures can be summarized by a discussion of holding
period return (HPR). Holding period return is defined as the return of a bond
investment over a given period of say 3 months. At the beginning of the period the
bond is bought at its current market price plus accrued interest. After 3 months the
bond is sold and the total end-of-period value equals the sum of market value and
accrued interest as well as the accumulated value of any coupon payments and
repayments due in the period. For in-prepayment MBBs the repayment portion could
be rather large due to high prepayment rates. End-of-period market value will of
course depend on end-of-period yield curves.

Figure 6.16 shows the 3 month HPR for the 20 year 10% annuity bond. We assume a
10% flat initial yield curve and the HPR is calculated for different levels of end-of-
period yields. The HPR for the MBB is compared to the HPR for a 6 year 10%
non-callable ordinary bond with quarterly payments. Initially the two bonds have
almost identical level-duration with equal to 4.62 and 4.58 respectively. Level-con-
vexity differ sharply with equal to -147.33 for the MBB and 24.90 for the non-call-
able bond. We assume both bonds to be bought and sold at their theoretical values72.

It is seen that for small changes in interest rates the two bonds have almost similar
performance. But for changes above basis points the MBB underperforms the
non-callable bond due to its undesirable change in duration. When rates increases the
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free shift endogenously determined as the spread between up- and down-state yield curves.
72 A similar analysis for callable corporate bonds can be found in Latainer and Jacob (1985).
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MBB gets longer and vice versa. For long-term investments most investors would
probably prefer the non-callable bond, but short-term investors would be indifferent,
provided that their portfolios are frequently rematched.

Figure 6.17:

Figure 6.17 shows a similar plot, but now the MBB is assumed to be priced 100 basis
points below its theoretical value. The bond returns to its theoretical value during the
period. The MBB now outperforms the non-callable bond for a wider range of yield
changes and it will be very attractive to an investor who expects a stable interest rate
regime.

6.5  Different groups of borrowers

Up til now we have assumed a single group of borrowers with a normal distributed
required gain. In practice borrowers may be divided into subgroups, each characterized
by a separate distribution. In this section we will discuss the implications of grouping.
Data on an 11% annuity bond maturing in 2010 will be used to illustrate the analysis,
but no attempt has been made to fit the model in any way.
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As seen from the sensitivity plots of section 6.3 several parameters of the model may
be used to stratify borrowers into different subgroups. The tax-rate is an important
determinant especially for cash-loans, cf. figure 6.2073. Differences in mean required
gain and prepayment costs could be used as grouping parameters as well. Parameters
like coupon rate, terms of notice, years-to-maturity74 etc. is common to all borrowers in
a single MBB and no subgrouping is necessary. Other important price-determinants
like initial term structure and future short term volatility is common to all MBBs.

In the following example the individual mortgage owners are divided into firms and
households. Firms have a marginal tax rate of 38%75 and a 2% cost-rate. The mean
required gain for firms is assumed to be 8% with a standard deviation of 2%. The
marginal tax-rate for households is 56%. Households face costs at 3% and we assume
a mean required gain of 10% with a standard deviation of 3%. The choice of para-
meters reflects that firms should have lower prepayment costs due to larger loan sizes.
We would also expect firms to be more aware of prepayment possibilities which would
probably lead them to prepay rather early with low standard deviation.

Other candidates for subgroups could be government controlled loans with low pre-
payment costs and a zero tax rate or small private mortgages with very high prepay-
ment costs.

Mean required gains and standard deviations are assumed to be constant although the
maturity dependent model discussed in section 6.3 may have been more appropriate.

73 For MBBs issued under the cash-loan system described in section 5.3 a further complication arises
because the cash-loan rate is specific to the issuing date of the individual mortgage. For some
cash-loan MBB which have been open for new issues in periods with large changes in market rates
it may be necessary to subgroup borrowers according to the issuing dates of their mortgages.

74 Remaining time to maturity for the individual mortgages may vary 1-3 years according to the
length of issuance period for each MBB, but this factor is probably easily accounted for by the
standard deviation of required gain.

75 Tax schemes as well as tax rates have been subject to several large changes since 1986. Corporate
tax-rates on interest payments has gone from 40% to 50%, down to 38% and are now equal to
34%. A precise calculation of effective tax-rates should include the rather long credit granted to
Danish firms. Taxation of households have likewise been subject to changes, but currently most
households will be able to deduct interest payments at rates between 50 and 58%. Given the
uncertainty of other parameters like volatility and required gain we have not found it necessary to
adjust tax-rates throughout the period.
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The prepayment model has been calculated for 0932027 which is an 11% annuity bond
with quarterly payments issued by the mortgage credit institution ’Byggeriets Realkre-
ditfond’ (BRF) under the bond-loan system. The bond matures in year 2010 and we
shall refer to it as 11-2010. Market data is taken for Wednesdays with four weeks
intervals starting 25-11-87 up till 01-07-92. The initial term structure is estimated on a
sample of non-callable bonds supplemented by 9% MBBs as explained in chapter 2. A
constant 14% volatility of future short term interest rates have been used throughout
the period.

Figure 6.18:
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The actual market price for 11-2010 is shown in figure 6.18. The curve labelled
’Firms’ is the theoretical price of 11-2010 if firms were the only mortgage holders in
the group. ’Households’ likewise refer to estimated prices from a household-only
model. If the weight of households relative to firms is known the resulting theoretical
price can be found as a simple weighted average. The curve ’Non-callable’ refers to
the estimated price of a similar non-callable bond.

Despite the casual nature of parameter estimation the model seems to fit the data
remarkable well. As expected prices implied by a firms-only assumption lies below
prices implied by a households-only assumption due to the lower prepayment risk of
the latter. Actual market prices consistently lies between the two groups and except for
the 1989-data the firm-group seems to provide the closest fit.
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As a by-product of the valuation procedure the initial gain from prepayment as well as
the initial prepayment rate is calculated as shown in figure 6.19. Firms have prepay-
ment gains above households, due to their lower cost- and tax-rate. Their mean
required gain is lower too which combines into far higher prepayment rates for firms.

Figure 6.19:
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To compare with actual prepayment rates our estimates are converted into quarterly
data using a two month term of notice. To give an example we find the quarterly
prepayment rate for the settlement date 1-10-1991 as an arithmetic average of estima-
tion results for the period 1-5-1991 to 1-8-199176. Estimated repayment rates is given
in table 6.4 together with actual repayment rates for BRF 11% 2010. Actual repayment
rates on two similar 11% 2010 bond issues from other mortgage credit institutions are
shown for later reference cf. the discussion below77.
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76 0.4% is added to adjust for ordinary repayment on principal. The same applies to the last four
BRF-rates, which were taken from disaggregated prepayment data, supplied as a whole number.

77 Actual prepayment data has kindly been supplied by the respective mortgage institutions.
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Table 6.6:Actual and estimated repayment rates for the 11% 2010 annuity bond.

Actual Estimated Actual Actual
Date BRF Estimated House- KD NYK

0932027 Firms holds 0923125 0971677

01-Jan-88 0.25 0.40 0.40 0.25 0.38
01-Apr-88 0.35 0.40 0.40 0.34 0.34
01-Jul-88 0.36 0.40 0.40 0.33 0.35
01-Oct-88 0.35 0.40 0.40 0.34 0.41
01-Jan-89 0.52 0.77 0.49 3.58 3.97
01-Apr-89 9.97 14.85 1.95 16.89 21.72
01-Jul-89 3.70 5.58 1.06 5.39 8.42
01-Oct-89 7.95 10.81 1.56 3.40 7.17
01-Jan-90 1.02 4.11 0.87 1.88 0.37
01-Apr-90 0.44 0.83 0.52 0.31 0.44
01-Jul-90 0.44 0.43 0.42 0.54 0.42
01-Oct-90 0.46 1.32 0.59 0.42 0.45
01-Jan-91 0.47 0.40 0.40 0.46 0.45
01-Apr-91 0.56 0.40 0.40 0.46 0.63
01-Jul-91 2.40 4.86 0.96 7.35 6.09
01-Oct-91 7.40 6.40 1.10 17.01 12.06
01-Jan-92 5.40 7.53 1.18 12.70 9.51
01-Apr-92 6.40 13.09 1.66 7.88 7.29
01-Jul-92 15.45 1.85
01-Oct-92 12.82 1.64

Figure 6.20 compares estimation results with actual BRF-data. 1989 as well as
1991-1992 have been periods of high prepayment rates and the plot shows a striking
correlation between the actual and estimated prepayment rates. Actual prepayment
rates lies below firms-estimates and above households except for the settlement date
1-10-91. Like the price-result above it seems as if the bond is well described as a
weighted average of firms and households.
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Figure 6.20:
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Table 6.7:Data on the composition of borrowers in 0932027 BRF 11% annuity 2010.

Share of borrowers Prepayment rate
Date House- House-

holds Firms holds Firms Total

01-Apr-89 32 68 1.1 13.1 9
01-Jul-91 34 66 0.9 3.3 2
01-Oct-91 35 65 2.9 9.9 7
01-Jan-92 37 64 2.1 6.0 5
01-Apr-92 38 62 2.0 7.6 6

The mortgage institution BRF has made some data available on the composition of its
borrowers78 as shown in table 6.7. Approximately 2/3 of the entire issue consists of
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78 BRF publishes prepayment data on the 24 largest 11 and 12% MBBs. The data is subdivided into
corporate borrowers with loans above and below 1 million DKK and private households with
mix-loan and annuity loans respectively. The data for 1-4-1989 is taken from Hasager and Møller
(1989), which contains a full description of the prepayment motives for the different groups. The
remaining data has been kindly delivered by BRF. BRF and Totalkredit are the only mortgage
institutions which are able to provide these services.

Regrettably data are published with rather low precision and no data was obtained for the period
between 1-4-89 and 1-10-91. Similar data on 9 and 10% issues are not available.
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corporate borrowers. The share of firms is falling relative to housholds due to higher
corporate prepayment rates.

Figure 6.21:
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Figure 6.21 compares actual prepayment rates of BRF 11% 2010 to predicted rates,
using a constant 66% share of firms. The prediction of the prepayment model fits the
data extremely well. The close fit is especially promising as the prepayment model
uses available market data obtained between 5 and 2 month ahead of the settlement
date. Investors equipped with a broader based version of the current model may not
only forecast periods of high prepayment risks, they would also be given enough time
to trade accordingly.

Most Danish mortgage backed bonds exist in triplicates because each of the three
dominating mortgage credit institutions, Nykredit (NYK), Kreditforeningen Danmark
(KD) and BRF coordinate their issues. This apply to the 11% 2010 bond as well. The
three bonds have identical settlement dates, maturities, issuing periods etc. They are
also priced exactly alike. On the 235 Wednesdays in the period 6-Jan-88 to 1-July-92
we found the maximum price difference to be 40 basis points. Only five observations
exceeded 25 basis points and on the majority of days the difference was well below 15
basis point. The only distinguishing feature happens to be their prepayment rates as
shown in table 6.4.4.
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Figure 6.22:
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Actual prepayment rates for the three different 11% 2010 MBBs are shown in figure
6.20 and it is evident that rates are higher for the NYK and KD issues. NYK and KD
may have been more actively engaged in the marketing of the prepayment option, but
the main reason is probably that BRF has a lower share of corporate borrowers, as
discussed in Hasager and Møller (1989)79.

Data on the composition of borrowers is not available for MBBs from KD and NYK.
Taking our example beyond its limit we have therefore estimated the share of firms as
the one which minimizes squared residuals between actual and predicted prepayment
rates. This procedure resulted in 58% firms for the BRF-issue, 98% for KD and 108%
for NYK ! Obviously this estimate exaggerates the share of firms in KD and NYK, but
it nonetheless provides some evidence on possible differences accross the mortgage
institutions80.
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79 Their paper predicted that MBBs issued by BRF would have lower prepayment rates than their
NYK and KD counterparts. Regrettably the market impact of written information seems small.

80 A lower mean required gain for corporations would give a more realistic fit of KD and NYK
prepayment data, but then the BRF-results get worse. Disaggregation of data into small and large
corporate loans could probably solve this problem as we would expect KD and NYK to have a
larger share of large corporate borrowing.
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Figure 6.23:

Finally we show actual price of BRF 11-2010 (BRF) against the predicted price
(BRF-Estim.) using a 66% share of firms. Note that the predicted prices are calculated
with no reference to actual market prices. The prepayment model has some trouble
explaining why the market keeps prices constant above 102 despite the large
prepayment rates of 1989 and it somewhat overstates prices in the end of the period,
but the overall fit is quite promising. The curve labeledNYK,KD-BRFshows the
predicted difference between the BRF 11-2010 and the similar 11-2010 issued by the
two larger mortgage institutions, using a 100% share of firms. This difference is not
reflected in quoted market prices and from available prepayment data we therefore
would expect a slightly inferior performance for the NYK and KD issues.

6.6  Conclusions

We have proposed a model with a continuous prepayment function, which directly
addresses the sub-optimal nature of the prepayment decision and which is closely
connected to current standards of advisory services.

The results of the model was easily explainable and they highlight the complex nature
of the callable mortgage backed bonds, while still being analytically and computatio-
nally tractable. The focus on tax considerations has shown to be an important issue
especially for bonds issued under the cash-loan system.
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Price behaviour of mortgage backed bonds was shown to be different from the price
behaviour of non-callable bonds, and any investor who uses the same methods on the
two types of bonds will be in big trouble.

Clearly the model lacks data. Especially the grouping of borrowers in the individual
bonds is needed. The current practice of some credit institutions of withholding these
informations from the investor community while themselves actively promoting pre-
payment services is probably unwise, as the resulting uncertainty on MBB pricing
might bias market prices downwards. This is especially a problem for the low-risk
private households who participates in a mortgage pool with a large share of corporate
borrowing.

For the credit institutions who provide simple grouping statistics our pricing results
indicates that a different grouping especially with regard to the tax status of the
mortgage owners would be appropriate. An even more relevant statistic would be the
average realized gain from exercise in each group. Grouping statistics should also be
published on lower coupon issues, especially the 10% MBBs.

The lack of readily avalible data on the grouping and tax-status of borrowers makes
the model seems like a specialists tool. But as shown in the next chapter it will be
possible to estimate the parameters of the model on available prepayment data. By
parameterization of the mean required gain and standard deviation it is possible to use
the same prepayment function across all MBBs. Even available data on the composi-
tion and tax-status of borrowers might be used in such a model.
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7 The Estimation of a Prepayment Model for Danish
MBBs

In this chapter we propose an empirical prepayment function for Danish MBBs and
estimate the model on a newly constructed data-set on actual prepayments. The esti-
mated prepayment function is incorporated into the arbitrage-free valuation framework
of section 3.3 and the resulting model is used to price a range of MBBs for the period
from 1988 to 1992.

It is shown that market prices are somewhat below the estimated prices for most of the
period. If the model is correctly specified we would therefore expect to find a higher
risk-adjusted return from investment in MBBs. An analysis of a newly constructed
data-set of four-weeks holding period returns shows that MBBs have in fact performed
above the level expected from non-callable bonds of similar risk. The regression tech-
nique used is of general nature and may be applied to other interesting aspects of bond
return behaviour.

As a by-product of the performance analysis we find that the duration measures devel-
oped in section 6.4 have a precision, which is comparable to duration measures from
non-callable bonds. This opens for a range of applications for the MBB-pricing model
in the context of hedging, prediction of future returns etc. We also show that the net
present value estimates are reliable predictors of future excess returns.

The prepayment data have become available very recently and due to severe time-con-
straints the empirical work are of a preliminary nature. We hope to follow up on these
issues shortly.

The use of an empirical prepayment function is partly motivated by recent work on
similar US mortage-backed securities and section 7.1 contains a review of some
important papers. Section 7.2 discusses how the US-models conforms with the Danish
market and argues for a somewhat different specification. Section 7.3 estimates the
prepayment model while results on estimated prices and durations are shown in section
7.4. Section 7.5 contains the analysis of holding period returns. The final conclusion is
given in section 7.6.
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7.1  US-models for mortgage-backed securities

The valuation of US mortgage-backed securities has received increased attention in
recent years. The share of securitized mortgages has rised, especially since the crisis in
the Savings and Loans Associations. By securitization the risks associated with mort-
gage cash flows can be passed through to other investors81.

US-mortgage backed bonds are very similar to the Danish MBBs studied in this thesis.
Default risk is almost zero as payments on most MBBs are guarantied by the Govern-
ment or Federal National Mortgage Associations (GNMA, FNMA) backed by the U.S.
government. Each MBB consists of a large pool of mortgages in which each individual
borrower may prepay the loan at any time at small prepayment costs. Mortgages are
given as annuities. Judging from the papers some differences remain. US mortgages
have monthly payments against semiannual or quarterly for the Danish market. US
mortgages often have due-on-sale clauses while Danish mortages are assumable. The
largest part of US MBBs are Single-Family pools, restricted to residential properties82,
while a Danish pool may contain small and medium sized residential mortgages
together with very large corporate mortgages. Finally an active US market exists for
adjustable rate MBBs as well.

This section discusses some models proposed for US mortgage backed bonds. The US
models typically consists of a prepayment model and a term structure model. The
prepayment model explains historical prepayment rates by interest rates and a set of
explanatory variables. The stochastic model of the term structure is estimated separ-
ately on non-callable bond data. Finally MBB-prices are found by a Monte-Carlo
simulation in which the term structure model generates paths of future interest rates
and the prepayment model generates the corresponding interest rate dependent cash
flows.

81 As of 1989 about one-third of residential US-mortgages have been securitized, cf. Breed-
en(1991,p.85). The corresponding number for the Danish market is larger with 63% of all mort-
gages being issued as MBBs. Numbers are taken from The Quarterly Bulletin of the National Bank
of Denmark(November 1991,p.23) as an average of mortgages held by mortgage credit institutions
relative to all new mortgages from 1981 to mid 1991.

82 Cf. Schwartz and Tourus(1989).
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As seen below the distinction between the prepayment and the term structure model is
not a clear-cut one as the choice of term structure model determines the types of
interest rates available for the explanation of prepayments and vice versa.

7.1.1 Common factors explaining prepayments.

The following factors are often83 listed as the main explanations of conditional prepay-
ment rates (CPR)84.

- The refinancing incentiveis equivalent to the gain from prepayment studied in
chapters 5 and 6. Borrowers tend to prepay high coupon loans, when market rates
are low. This is an important factor even for adjustable rate MBBs as shown by
McConnell and Singh(1991).

- Premium Burnout- This effect is caused by a changed composition of borrowers.
A premium mortgage pool85, which has experienced high CPR for a while, tend to
get lower CPR as time passes, because the mortgagors most inclined to prepay
depart from the pool.

- Households mobilitycause prepayments because most US mortgages are due-on-
sale. Household mobility is seldom used directly. Instead it is captured by the
following factors:

- Mortgage age. Prepayments on par mortgages start at 0%, but as people start to
move, CPR increases, reaching a fullyseasonedannualized level at about 6% after
two years86. Discount poolsmay season slower, as households are deterred from
moving. The long run influence from mortgage age seems to be an open question.
Lifecycle considerations would lead to increased prepayments as mortgage owners
age, but some authors observe the opposite trend.

83 Cf. Richard and Roll(1989).
84 Monthly CPR is measured as $prepayed divided by ($balancet-1 - $scheduled principal paid)
85 In Richard and Roll(1979) the terms discount, par and premium pools refer to pools in which the

coupon rate is below, at par with or above current refinancing rates.
86 Richard and Roll(1989).
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- Month of the year- This refers to a distinct seasonal pattern with low CPR in
February-March and high CPR in October-November. With a lag due to the term
of notice this can once again be explained by households mobility.

- Macroeconomic factors:Breeden (1991), using data back to 1979, shows that
during the recession period 1980-1982 prepayment rates were low compared to the
following period of consistent growth. Again household mobility is the main
explanatory variable.

- Geographical variationmay exist due to differences in mobility.

The papers reviewed below generally agree on the explanatory variables, but their
practical implementations differs.

7.1.2 Green and Shoven (1986)

The paper by Green and Shoven (1986) studies the impact of interest rates on prepay-
ment rates motivated by the liquidity problems of US Savings and Loan Associations.
No formal valuation model is given. The paper uses individual data on 4000 mortgages
held by two large Californian Savings and Loans Associations. Each mortgage is
observed from 1975 to 1982. Known characteristics for each mortgage includes orig-
inal mortgage amount, original length of mortgage, coupon rate, starting year, and date
of prepayment if prepayed.

The prepayment function is estimated by the proportional hazard model proposed by
Cox(1972)87. In the present context the hazard rate is the continuous rate of
prepayment at timet given that the mortgage has not been prepayed prior to timet.

is simply the continuous time equivalent to the prepayment function used in
chapter 5 and 6.x is a vector of explanatory variables. The proportional hazard model
can be formulated as

(7.1)

λ(t , x)

λ(t , x)

λ(t , x) = λ0(t)exp
 ∑

i = 1

n

βi ⋅ xi



87 Kiefer(1988) contains an excellent survey of hazard models.
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where the prepayment rate is factored into the so-calledbaseline hazard, , which

depends on mortgage aget only, and a term which depends on the parameter vectorx.
GS use an exponential formulation with representing a vector of unknown coeffi-
cients to be estimated.

The empirical specification uses only one explanatory variable in thatx equals the
lock-invariable defined by

(7.2)

is the general price increase on houses since start of mortgage. Lock-in can be seen

as a measure of the disincentive to prepay and as expected GS find a negative
association between lock-in and prepayment rates. The model was estimated by partial
likelihood88 with due account of censoring.

The estimated baseline-hazard measures the rate by which at-year mortgage prepay,
provided the lock-in variable is zero. Baseline prepayment rates are largest between
3-7 years and after 14 years, confirming the mortgage age effect discussed above89.

7.1.3 Schwartz and Tourus (1989)

Schwartz and Tourus(1989) describe a complete valuation model for MBBs. The pre-
payment function is estimated by a proportional hazard approach but contrary to Green
and Shoven(1986), ST have no data on individual mortgages. Instead they construct a
pseudo-individual data-set from monthly CPR for 27 large 30 year GNMA Single-
Family pools observed in the period from January 1978. By assuming a common
principal of $100,000, ST are able to calculate the number of mortgages originally
issued, the number prepaying at time 1, 2, 3 etc. for each of the MBBs, and the number
censored, i.e. the mortgages still active when the sample period ends November 1987.

λ0(t)

β

lock-in =
face value - market value

initial principal amount× It

It

88 Cf. Kalbfleisch and Prentice(1980,ch. 4). Partial likelihood allows to be estimated without a

specification of . Statistical software like LIMDEP or SAS includes routines for the estimation

of most proportional hazard models.
89 In a related study Quigley(1987) the proportional hazard model is used to explain data on house-

hold mobility. His estimations includes a large range of socio-economic factors, but a lock-in
measure similar to Green and Shoven(1986) is shown to reduce household mobility and thereby
indirectly prepayments.

β
λ0(t )
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Schwartz and Tourus apply a proportional hazard model with the baseline hazard
parameterized by a log-logistic function and four explanatory variables. The model is
estimated by maximum likelihood.

The refinancing incentive is modelled as a simple difference between coupon rate and
refinancing rate weret denotes mortgage age at prepayment
or censoring,c is the coupon rate and the long-term Treasury rate laggeds
periods. To account for non-linearities in the refinancing relation, ST use the cube of

, as a second explanatory variable. Premium burnout is modelled by
. is the dollar amount of the pool outstanding at timet, while

is the dollar amount that would prevail at timet in the absence of prepayments. A
low value of should therefore indicate a burned out pool consisting mainly of slow
prepayers. Finally ST employ a seasonal dummy, equal to one between May and
August and zero otherwise.

The empirical results show that prepayments increase more than linearly with the
difference between coupon rate and the refinancing rate lagged three months. As
expected burned-out pools have lower prepayment rates, but the seasonal dummy turns
out to be insignificant90. The baseline prepayment rate increases up to a maximum at 6
years and diminishes thereafter with mortgage age.

The estimation of the prepayment function was only the first step. Turning to the term
structure models ST specify and estimate a version of the two-factor model proposed
by Brennan and Schwartz(1979). This model explains the term structure by the corre-
lated evolution of the short term rate and the rate of a long term console bond. The
choice of this two-factor model corresponds with the prepayment specification, which
needs a long term rate to model the refinancing incentive. As noted in section 3.1 this
’traditional’ type model will not fit the current term structure, but ST employ a sort of
calibration procedure by determining a value of the market price of short term risk,
which allow the model to price a specific non-callable mortgage correctly.

Finally the prepayment function is integrated into the term structure model. As the
refinancing incentive as well as the burn-out effect depends on the history of interest
rates the model is path-dependent, and ST solve it by use of a Monte-Carlo simulation
procedure. Results given for some initial values of short and long term rates are

v1(t) = c − l (t − s), s ≥ 0
l (t − s)

v1(t)
v3(t) = ln(AOt/AOt

*) AOt

AOt
*

v3

v4(t)

90 Comparing with Richard and Roll(1989), the seasonal dummy should probably have been set to 1
in August-November instead, due to the prepayment lag.
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broadly equivalent to the price curves shown in section 6.3 except for the fact that the
high baseline prepayments explained by household mobility allow the MBB to exceed
the value of a comparable non-callable bond for high values of the long rate. The
initial spread between short and long rates has a surprisingly small effect on long term
bond prices, indicating that the term structure converges very rapidly toward a constant
long rate level.

7.1.4 McConnell and Singh(1991)

Schwartz and Tourus(1989) may seem complex, but the paper by McConnell and
Singh(1991) contains perhaps the most elaborate valuation model ever seen. They set
out to value adjustable rate mortgage-backed bonds (ARMBB). These securities are
similar to fixed coupon MBBs, except that coupon rates are annually adjusted to the
one-year Treasury bond yield index. The ARMBBs have annual adjustment caps of

as well as a life-time cap typically 6% above initial coupon rates. Borrowers are
allowed to prepay at any time.

The MS-model is quite similar to Schwartz and Tourus(1989). Data consists of condi-
tional prepayment rates, which are converted to mortgage duration data by the
$100,000-trick described above. MS use a proportional hazard model with seven
explanatory variables to estimate the prepayment function. The refinancing incentive is
measured by recent changes in short rates. The burned-out effect is captured by a
dummy, which equals one, if the prevailing short rate is below the minimum for the
last 12 months. The idea is that only a rate lower than previous rates will induce some
of the remaining mortgage holders to prepay. Seasonality is included as well as vari-
ables connected to cap-features and yield curve slope. Yield curve slope measures
prepayment incentives by switchers, who change to a fixed-coupon mortgage.

A two factor model is estimated as in Schwartz and Tourus(1989), but calibrated to
match the price of a non-callable ARM-backed bond. Integration of the prepayment
function is more complicated due to several new state variables measuring minimum
rates, capped coupons etc. Examples of ARM-backed sequrity prices are finally
obtained by Monte-Carlo simulation. Regrettably no information is given on computa-
tional aspects.

±2%
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The simulation results by McConnell and Singh show that prices of ARM-backed
bonds are quite volatile in the absence of prepayments due to the adjustment lag and
cap-features. Prepayments dampen volatility considerably as the MBB-values are
driven towards par.

7.1.5 Jacob, Lord and Tilley(1987)

Jacob, Lord and Tilley(1987) provide an excellent introduction to the pricing of
MBBs, but their paper lack some detail. JLT state the explanatory factors given above
and give the following simple example of a prepayment function

(7.3)

where CPR denotes monthly conditional prepayment rates,K is an age- and month-of-
year dependent function,c denotes the coupon rate and is the 10-year Treasure
yield, laggedj months. Taking exponentials the model resembles the proportional
hazard specification given above91. The last term measures the refinancing incentive as
the average difference between coupon rate and a lagged 10-year Treasury yield. The
actual model used by Morgan Stanley, New York, contains a more sophisticated
specification.

The term-structure model is a single factor arbitrage-free BDT-model. Judging from
the paper, JTL first use the model to find 10 year Treasury yields along a sample of
paths, probably by repeated use of a backwards pricing procedure and then the stan-
dard path-dependent valuation procedure is used, with MBB cash flows given by the
prepayment function. A few comforting pricing results are shown.

7.1.6 Richard and Roll(1989)

Richard and Roll(1989) give an extensive discussion of prepayment motives and pres-
ent the prepayment model developed at Goldman Sachs, New York. Their model for
GNMA Single-Family pools are based on 103,694 observations on monthly CPR for
the period May 1979 to May 1988. RR explain CPR as the product of four effects:

ln CPR= a0 + a1K + a2 ∑
j = 1

4

(c − rT − j)

rT − j

91 No information is given on estimation techniques, but it looks as if a direct regression approach is
used.
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(7.4) CPR =(Refinancing Incentive) x (Seasoning Multiplier) x
(Month Multiplier) x (Burnout Multiplier)

Each term in the multiplicative relationship is separately modelled and the combined
model estimated by weighted least squares. MBBs receive weights according to their
nominal balances and old observations receive less weight than newer observations.

RR argue that the basic economic variable measuring the borrowers refinancing incen-
tive is A/P, that is present value, A, of the annuity, divided by outstanding principal P.
The coupon rate, C, divided by the refinancing rate, R, provides a reasonable
approximation, at least for long mortgages, and C/R is used throughout their model.
The refinancing incentive is estimated as a function of C/R starting at 4% for discount
pools (C/R=0.6), rising slowly to 8% for C/R=1.1 and then sharply increasing with
20% for C/R=1.2 and 45% for high premium pools (C/R=1.4). The seasoning mul-
tiplier gives the fraction of long-run prepayment level reached as a function of mort-
gage age. Once again this depends on C/R with premium pools reaching 100% of
long-run level in two years, while discount pools takes nearly ten years. The
month-of-year effect is estimated as a set of multipliers, with March prepayment 25%
below and November prepayment 25% above average level.

The premium burnout effect is explained by differences in prepayment costs among
individual borrowers. This causes prepayment rates to be substantially lower the sec-
ond time the pools reaches a certain low level of interest rates. Some prepayments may
occur however as prepayment costs change over time. At Goldman Sachs the effect of
premium burnout is captured through a "complicated non-linear function. This func-
tion depends on the entire history of C/R since the mortgage was issued." (p.76).

The authors show some impressive results on their models in-sample predictions of
average prepayment rates for different coupon rates and refinancing ranges. The over-
all R-squared for monthly CPR-predictions, when MBBs are grouped by coupon and
remaining time to maturity, is 94.6%

No valuation model is presented, but a Monte-Carlo simulation is shown in which the
refinancing rate R follows a random walk with 8% annual variance. The path of CPR
clearly shows the effect of premium burnout.
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7.2  Modelling Danish prepayment data

The previous section surveyed papers published on the valuation of US mortgage-
backed securities. Only three of the papers described a combined prepayment and
valuation model, but similar models are probably in use as proprietary models in
investment firms etc.

Despite their complexity all US-models agree on the central prepayment motives as
well as the path-dependent nature of MBB-valuation. Before trying to implement such
a model for the Danish market one should note some important differences.

All Danish mortgages are assumable and a priory household mobility should therefore
play a minor role in the explanation of prepayment. We would not expect to find
significant seasonal effects and baseline prepayment rates should be lower92. Geo-
graphical differences can hardly play a role in the Danish market.

The loans issued during the cash-loan system described in section 5.3 are still a major
part of outstanding mortgages and these loans have lock-in effects due to taxation. Our
model should incorporate some adjustment for these loans.

Danish 20-year mortgage pools consist of corporate as well as household mortgages.
Corporate loans are much larger, and as indicated in section 6.5 their prepayment rates
are higher. A significant burnout effect would thus be expected for these MBBs as
corporate borrowers leave the pools. On the other hand, we do not know the exact
share of corporate loans, and high prepayment rates could therefore signal a large
share of firms which would indicate higher future prepayment rates.

Summarizing we expect that a model for Danish prepayment data should include the
prepayment incentive and the burnout effect. MBBs with corporate borrowing as well
as MBBs issued under the cash-loan system require separate treatment.

Path-dependency seems to be an invariable characteristic of MBB valuation models.
The path-dependency stems either from the lag between the prepayment decision and
the actual prepayments or from the burn-out effect.

92 The change in legislation May 1992, which allow borrowers to prepay and take a new 30-year
mortgage may lead to high prepayment rates for mortgages with few years remaining, cf. section
6.2. This effect is not covered in the data available.
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In the current analysis we shall nevertheless use a path-independent MBB-pricing
model for several reasons.

The path-independent specification is simpler to implement and generally far more
efficient. To employ a path-dependent specification required a complete rewrite and
test of our valuation model, which was not possible within the time-limits of this
thesis. Monte-Carlo techniques furthermore introduces sampling errors. Finally we
wanted a PC-model, able to compute prices, modified durations and convexities for
hundreds of MBBs several times during a single trading day. The papers reviewed
above present no information on calculation times for their models, but judging from
Cheyette(1992) a well designed standard Monte-Carlo approach might easily run 1-2
minutes for a single valuation, while the path-independent model used below needs 4-6
seconds on a comparable PC93.

Secondly a backward pricing path-independent procedure allows for a precise model-
ling of the refinancing incentive. As noted by Richard and Roll(1989) the borrower
possesses an American option and his refinancing decision should be based on the
present value of the mortgage relative to remaining principal. This is exactly the
approach taken in this thesis. But while present values and option hold-on values are
easily calculated at each date-event for a backwards pricing procedure, they are not
readily available, when a single interest path is followed from time zero to maturity.
This is probably why the path-dependent models reviewed above all use approximate
measures like differences or ratios between coupon and refinancing rates. These speci-
fications does not fully capture the assumed stochastic evolution of the term structure
as well as the change in mortgage volatility as time to maturity decreases. The
complicated interactions between taxation and time to maturity, documented in section
5.3, would also be hard to implement for a path-dependent Monte-Carlo procedure.

Thirdly our model already includes the prepayment lag caused by the term of notice.
As described in section 3.3 the prepayment function is specified at the decision date
and based on the present value of a mortgage prepayed at the later settlement date. In a
path-dependent specification the prepayment function is specified at the settlement
date depending on lagged interest rates. No significant difference exists between these
two approaches.

93 Cheyette(1992) presents a ’representative path method’, which produces path-dependent valu-
ations significantly faster than the standard Monte-Carlo approach, but the exact algorithm is not
given.



142 7  The Estimation of a Prepayment Model for Danish MBBs

Finally the burnout effect may be described as a case of unobserved heterogeneity.
Consider a simple example, in which the pool is divided into firms with low prepay-
ment costs and households with high prepayment costs. First time the interest rate hits
a low level most firms prepay, but only a few households. Next time the level is
reached fewer prepayments occur, as firms have left the pool. Aggregate prepayment
data would show clear signs of a path-dependent burnout effect.

Path-dependency arises because the proportion of firms relative to households changes
troughout the path. If the proportion of firms could be observed at time zero, the need
for a path-dependent specification disappears. The MBB should be viewed as a port-
folio of two pools consisting of firms and households respectively. Each pool could be
valued separately by a path-independent valuation model and the final MBB-value as a
simple weighted average. More or less directly this is the approach suggested by all
papers on Danish MBB-valuation.

As noted in section 6.5 at least one Danish mortgage association makes limited data on
the composition of borrowers available. But even without such data one might at least
in principle estimate the composition from historical prepayment data. Estimation
techniques which accounts for such unobserved heterogeneity have been applied in the
context of labour market models, cf. Kiefer(1988). The complicated burnout effects of
the US models captures the change in borrowers composition indirectly, by observing
how historical prepayment rates have changed along the observed path of interest
rates.

The conclusion is that the path-independent model of section 3.3 may be quite suitable
for the valuation of MBBs. The model is easy to implement, computationally efficient
and void of sampling error. In some respects it allows for a more realistic description
of the reinvestment incentive, and lags between the borrowers decision and the final
prepayment can be modelled at little extra costs. The burnout effect can be reinter-
preted as a case of unobserved heterogeneity and valuation results similar to the
path-dependent model may be obtained by calculations conditioned on an initial
distribution of borrowers94.

r * r *

94 The path-independent model is not generally applicable. The way in which caps change the
cash-flow of ARMBBs in the model of McConnel and Singh(1991) requires the use of a path-de-
pendent model. The same goes if borrowers are viewed as technical traders, who base their
reinvestment decision on past changes in interest rates. New techniques, cf. Cheyette(1992), might
hopefully produce much faster path-dependent valuation algorithms.
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7.3  Data and estimation

This section reports estimation results from several versions of a prepayment model
for Danish bond data. All estimations are done using observed quarterly prepayment
rates for 69 Danish bonds in the period 1988 to 1992. The estimation are done in a
probit model framework. As shown below this specification follows directly from our
model of the individual borrowers refinancing decision. The next section discusses
pricing results from one of the estimated prepayment models.

To obtain the data on observed prepayment rates for Danish MBBs, we made contact
to the three dominating mortgage credit associations, ’Kreditforeningen Danmark’
(KD), ’Nykredit’ (NYK) and ’Byggeriets Realkredit Fond’ (BRF). All associations
kindly supplied copies of their published drawing lists for the period 1985-1992.
Computerized data was regrettably not available.

The data was transformed into computer readable form by the use of a scanner in
combination with optical character recognition software (OCR)95. Although OCR beats
manual entry it is still a very time consuming process and the format and quality of the
printed material have been a limiting factor. Some lists did not contain the necessary
bondcode information while poor printing quality made the BRF-lists illegible to the
OCR-software. These data have therefore been omitted in the present analysis.

The basic data-set consists of 11704 individual repayment observations. For this pre-
liminary study a subset of 1032 observations was selected coming from 69 MBBs with
nominal outstanding amount above 500 million DKK. To increase homogeneity all
bonds were required to have quarterly payments. This condition excludes bonds issued
under the cash-loan system cf. section 5.3. We finally confined ourselves to the period
from April 1988 to July 1992, which as seen in section 2.3 includes the two major
periods of low interest rates. Table 7.1 shows a list of all bonds with some statistics.

95 The author is indebted to cand.merc. Henrik Sørensen, GTJ FinansAnalyse, who has prepared the
prepayment data for the current analysis.
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Table 7.1: Summary of prepayment data for 69 large MBBs with quarterly payments
in the period from April 88 to July 92.

Average Maximum Burnout
Credit prepay- prepay- rate,
Asso- Coupon Last Bond High ment rate ment rate July

BondId ciation rate Name Year Type Risk (%) (%) 1992

0971804 NYK 12 2.S. 2007 ANN 0 6.93 34.59 0.254
0922676 KD 12 22.S 2007 ANN 0 6.41 29.57 0.292
0923184 KD 12 22.S. 2010 ANN 1 11.04 37.21 0.110
0971790 NYK 12 2.S. 2010 ANN 1 11.85 47.67 0.085
0922684 KD 12 23.S 2017 ANN 0 4.97 15.53 0.477
0971782 NYK 12 3.S 2017 ANN 0 5.26 22.84 0.382
0971774 NYK 12 3.S. 2020 ANN 1 9.50 36.72 0.159
0923176 KD 12 23.S. 2020 ANN 1 6.83 17.56 0.293

0922323 KD 11 22.S. 2007 ANN 0 2.70 9.79 0.637
0971421 NYK 11 2.S. 2007 ANN 0 2.81 15.87 0.634
0971650 NYK 11 12.S.S 2010 SER 0 0.84 2.50 0.875
0923567 KD 11 52.S.S. 2010 SER 0 0.92 2.98 0.865
0971677 NYK 11 2.S 2010 ANN 1 4.37 21.35 0.458
0923125 KD 11 22.S. 2010 ANN 1 4.24 16.53 0.462
0924512 KD 11 22A.S. 2012 ANN 1+ 23.37 61.49 0.259
0973297 NYK 11 2A.S. 2012 ANN 1+ 17.07 59.59 0.208
0971413 NYK 11 3.S. 2017 ANN 0 1.79 12.24 0.736
0922315 KD 11 23.S. 2017 ANN 0 2.04 9.54 0.706
0923117 KD 11 23.S. 2020 ANN 1 2.58 9.49 0.643
0971669 NYK 11 3.S 2020 ANN 1 2.30 9.93 0.680

0921157 KD 10 22.S. 2006 ANN 0 0.41 1.86 0.941
0971316 NYK 10 2.S. 2007 ANN 0 0.26 1.48 0.962
0922463 KD 10 52.S.S 2007 SER 0 0.50 2.04 0.930
0971480 NYK 10 12.S.S 2007 SER 0 0.50 2.23 0.929
0922188 KD 10 22.S. 2007 ANN 0 0.33 1.81 0.956
0971693 NYK 10 12.S.S 2010 SER 0 0.42 1.43 0.936
0923079 KD 10 22.S. 2010 ANN 0 0.20 1.64 0.971
0923524 KD 10 52.S.S. 2010 SER 0 0.40 1.50 0.944
0971715 NYK 10 2.S. 2010 ANN 0 0.21 1.05 0.971
0973262 NYK 10 12A.S.S 2012 SER 0 0.32 0.72 0.981
0924504 KD 10 22A.S. 2012 ANN 0 0.00 0.13 1.000
0973254 NYK 10 2A.S. 2012 ANN 0 0.16 0.33 0.991
0970271 NYK 10 3.S. 2017 ANN 0 0.13 0.81 0.983
0921165 KD 10 23.S. 2017 ANN 0 0.19 1.46 0.970
0923532 KD 10 53.S.S. 2020 SER 0 0.12 0.83 0.983
0971685 NYK 10 13.S.S 2020 SER 0 0.17 0.71 0.977
0971707 NYK 10 3.S. 2020 ANN 0 0.12 0.62 0.984
0923060 KD 10 23.S. 2020 ANN 0 0.12 1.27 0.983
0973270 NYK 10 3A.S. 2022 ANN 0 0.11 0.41 0.994
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0924644 KD 10 53A.S.S 2022 SER 0 0.04 0.29 1.000
0924539 KD 10 23A.S. 2022 ANN 0 0.10 0.34 0.995
0973289 NYK 10 13A.S.S. 2022 SER 0 0.14 0.24 0.993

0921181 KD 9 21.S. 1996 ANN 0 0.31 1.43 0.946
0924156 KD 9 21.S. 2000 ANN 0 0.07 0.67 0.992
0921203 KD 9 22.S. 2006 ANN 0 0.00 0.03 1.000
0970433 NYK 9 2.S. 2006 ANN 0 0.00 0.03 0.999
0921912 KD 9 22.S. 2007 ANN 0 0.02 0.23 0.999
0970522 NYK 9 2.S. 2007 ANN 0 0.01 0.16 0.999
0971979 NYK 9 12.S.S. 2010 SER 0 0.16 0.99 0.976
0924172 KD 9 22.S. 2010 ANN 0 0.01 0.33 0.997
0971936 NYK 9 2.S. 2010 ANN 0 0.04 0.38 0.993
0924229 KD 9 52.S.S 2010 SER 0 0.03 0.39 0.995
0924490 KD 9 22A.S. 2012 ANN 0 0.00 0.08 1.000
0973203 NYK 9 2A.S. 2012 ANN 0 0.06 0.14 0.996
0924598 KD 9 52A.S.S 2012 SER 0 0.01 0.12 1.000
0973211 NYK 9 12A.S.S. 2012 SER 0 0.16 0.28 0.990
0970441 NYK 9 3.S. 2017 ANN 0 0.01 0.05 1.000
0921211 KD 9 23.S. 2017 ANN 0 0.00 0.01 1.000
0924237 KD 9 53.S.S. 2020 SER 0 0.03 0.37 0.995
0971987 NYK 9 13.S.S. 2020 SER 0 0.02 0.15 0.997
0971944 NYK 9 3.S. 2020 ANN 0 0.03 0.21 0.996
0924180 KD 9 23.S. 2020 ANN 0 0.00 0.06 0.999
0924636 KD 9 53A.S.S. 2022 SER 0 0.00 0.06 1.000
0924520 KD 9 23A.S. 2022 ANN 0 0.00 0.02 1.000
0973246 NYK 9 13A.S.S. 2022 SER 0 0.09 0.16 0.994
0973238 NYK 9 3A.S. 2022 ANN 0 0.03 0.08 0.998

0970859 NYK 8 2.S. 2006 ANN 0 0.01 0.09 0.999
0921637 KD 8 22.S. 2006 ANN 0 0.03 0.18 0.995
0921645 KD 8 23.S. 2017 ANN 0 0.00 0.01 1.000

For each settlement datet and bondm the published drawing lists supply total
repayment rates, , i.e. the sum of scheduled and non-scheduled repayments as a
fraction of outstanding nominal value. Scheduled repayment rates, , have been
calculated based on the normal amortization schedule and the prepayment rate, ,
was finally found as . Table 7.1 shows average and
maximum prepayment rates for each bond in the sample. The overall maximum
prepayment rates come from two 11% 2012 bonds with rates around 60%.
Low-coupon bonds show almost zero prepayments which confirms the conjecture of
section 7.2 that housing turn-overs play an almost negligible role on Danish data
compared to US prepayment experience. Figure 7.1 shows average prepayment rates
for different coupon rates and settlement dates.

TRRmt

SRRmt

λmt

λmt = (TRRmt − SRRmt)/(1− SRRmt)
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Figure 7.1: Aver-

age prepayment

rates for different

settlement dates

and coupon

rates.

The required gain model of chapter 6 lends itself directly to a statistical formulation.
Consider a MBBm in which each borroweri has a required gain at time t. The
required gain is assumed to be normally distributed across borrowers with mean
required gain of and standard deviation . At timet borrowers observe theactual
gain from prepayment, . Let the decision variable equal one, if borroweri
prepays at timet and otherwise. The probability that a single individual pre-
pays is thus given by

(7.5)

where denotes the standard normal distribution function. The observed fraction of

prepayed loans96, , from bondm at time t will thus be an estimate of the true
prepayment probability .
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96 We implicitly assume all loans in a single pool to be of equal size.
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The model is a special case of the so-calledprobit modeloften used to model econo-
mic decision problems97. A more general specification of a probit model assumes that
the decision variable depends on a vector of explanatory variables, ,

(7.6)

where , is a vector of unknown coefficients. Note that the explana-

tory variables may depend onm andt, while is constant.

The unknown parameter vector can be estimated by maximum likelihood given

observed quarterly prepayment rates, , as well as a vector of explanatory variables
. The log likelihood is given by

(7.7)

The log likelihood is globally concave, cf. Amemiya(1981,p.1495), provided all pre-
payment rates lie between zero and one and the maximization can be done by standard
Newton-Raphson techniques98.

The choice of explanatory variables reflects the choice of pricing model. We are
mainly interested in variables which are either constant or easily calculated as part of
the backwards pricing procedure, cf. the discussion of the previous section.

The pre-tax gain from prepayment, defined by is used as the

primary indicator of the refinancing incentive. denotes the present value of sched-
uled payments from the bond discounted by the term structure of non-callable bonds99

ymti xmt = {xmtk}
k = 1, ..K

Prob[ymti = 1] = Φ ∑
k = 1

K

βkxmtk


β = {βk} k = 1, .., K
β

β
λmt

xmt

ln L = ∑
m

∑
t

λmt ln Φ(β’xmt) + (1− λmt) ln(1− Φ(β’xmt)) .

gmt gmt = (Bmt − Wmt)/Bmt

Bmt

97 Probit-models may be estimated on individual decision data as well. For a survey of probit and
related models see Greene(1990, ch.20-21) or Amemiya(1981).

98 We have used the statistical software system LIMDEP ver. 5.1 developed by prof. William H.
Greene. The sample contains some observations with . These have been substituted by a

small number (0.03%) as suggested in Greene(1989,p.203).
99 We have used the non-callable flat-spline model discussed in section 2.3. This model was judged

to be the best model for the 1988-92 period.

λmt = 0
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while denotes the prepayment value, i.e. the present value of the remaining
payments provided the borrower decides to prepay his loan at timet. corresponds
to remaining principal adjusted for prepayment costs of 2% and a 65 days term of
notice100.

The gain from prepayment was calculated with four weeks intervals for all 69 bonds in
our sample for the period from January 1988 to June 1992. To get a unique measure of
the gain corresponding to each quarterly settlement date we have chosen the maximum
gain obtained in the three month period ending 65 days before each settlement date101.
This measure is labelledMGAIN00in the tables below.

In general the gain from prepayment obtained from this procedure will differ from the
actual gain presented to the mortgage owner. The mortgage owner will typically prefer
to refinance in a new lower-coupon MBB, perhaps a 9% bond. As shown in section 2.3
these bonds have had higher yields than corresponding non-callable bonds. This may
overstate the refinancing incentive especially for the last part of the sample period.

A second objection could be that borrowers use an after-tax valuation procedure as
discussed in chapter 5 and 6. To assess the influence from taxation we have followed
the same procedure for tax rates of 38% and 50%. The resulting gains differed in level
from MGAIN00, but with pairwise correlation coefficients all above 0.997102. We
conclude thatMGAIN00will be a sufficient statistic for the after-tax refinancing incen-
tive at least for the present sample of bonds103. Figure 7.2 displaysMGAIN00 for
different bonds and settlement dates.

One should note that the exact level of the refinancing incentive is non-essential
because a change in level will be reflected in new values for the estimated coefficients
of the prepayment model. But the explanatory variables used for the estimation must
of course correspond closely to the variables used in the pricing procedure.

Wmt

Wmt

100For further details see section 5.1.
101 We have tried average gain as well, but that measure failed to detect the sudden increase in

prepayments January 1989 and July 1991.
102This simply reflects that the sample consist of bond-loans only. For bonds issued under the cash-

loan system one would have obtained a relatively larger reduction in gain for increased tax-rates.
For these loans the use of an after-tax gain would probably increase explanatory power.

103A measure like showed a correlation of 95% toMGAIN00indicating room for further

simplifications of the model.

(Bmt − 100)/Bmt
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Figure 7.2:
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The second explanatory variable,MATURITY, equals the remaining time to maturity of
the bond at each settlement date. From the analysis of optimal prepayment behaviour
we would expect borrowers to require a higher gain from prepayment for longer term
loans.

MBBs with a large share of corporate borrowers may react more quickly to changes in
the level of interest rates. Some high-coupon MBBs issued after the 1989-period of
high prepayment rates may furthermore contain a share of "speculative borrowers",
typically corporations, who have taken a high-coupon mortgage with the intention of
prepaying after a subsequent fall in interest rates. In the absense of published informa-
tion from NYK and KD on the share of corporate borrowers a dummy variable,
HIGHRISK, is created which captures newly issued 11% and 12% annuity bonds104.
The high-risk dummy is shown in table 7.1.

To see if burnout effects are present in the Danish data we have followed Schwartz and
Tourus(1989) and defined the variableBURNOUTequal to where is
the amount outstanding from bondm at timet while is the amount that would be
present in the absence of prepayment. In the calculation we have assumed a starting
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104Mortgages backing serial bonds are almost exclusively issued by households in connection with the
so-called mix-loans. 30-year bonds, like 11% and 12% 2020 are not open for normal corporate
issues, but they may contain loans to the agricultural sector. The bonds chosen have all been open
for new issues August 1990 or later.
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value of one in January 1988 for all bonds. The value ofBURNOUTat the end of our
sample period is shown in table 7.1. The record holder is the 12% 2010 annuity bond
from NYK, with only 8.5% of the mortgages left. The two 11% 2012 bonds have
experienced even higher prepayment rates, but they have not been open for the full
sample period. For convenience we use the log transformation in the estimations, i.e.
LOGBURN=ln(BURNOUT).

Finally a constant equal to one,CONST, is included in the regressions to capture the
level of mean required gain.

The explanatory variables can be subject to various transformations. However, the
three simple specifications below seem to capture the data just as well as the more
complex specifications tested105.

Model A assumes a constant standard deviation of required gain, , with mean

required gain being a linear function of time to maturity. The dummy variableHIGH-
RISKaffects prepayment through a different level of the mean, i.e.

(7.8)

The following relation shows the correspondence between , , , and the

-coefficients of the general probit model106

σmt ≡ σ

gmt
* = a1 ⋅ CONST+ a2 ⋅ MATURITYmt + a3 ⋅ HIGHRISKmt

σmt = σ

σ a1 a2 a3

β

105Models in which the standard deviation depends linearly or by the square root of time to maturity,
i.e. and have been tested with almost equivalent results. In these models

the constant part of mean required gain often turns out insignificant. Models in whichHIGH-RISK
andLOGBURNaffects has also been tried with less success.

106Subscriptmt has been suppressed.

σmt = σ√Tmtσmt = σ ⋅ Tmt

σmt
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(7.9)

Model B extends model A with theLOGBURNvariable which is added in the same
way as HIGHRISK. Model C is equal to B except for a special dummy variable
VERYRISK, which equals one for the two 11% 2012 bonds and zero otherwise.
CorrespondinglyHIGHRISKis set to zero for these two bonds.

Table 7.2:Parameter estimates for three different prepayment models.

Std.Err. Std.Err. Std.Err.
Model A T-ratio Model B T-ratio Model C T-ratio

MGAIN-00 0.0987 0.0223 0.1303 0.0330 0.1286 0.0329
4.4240 3.9480 3.9060

CONST -1.9006 0.4870 -1.5275 0.5440 -1.6778 0.5661
-3.9030 -2.8080 -2.9640

MATURITY -0.0531 0.0241 -0.0799 0.0316 -0.0724 0.0321
-2.2030 -2.5290 -2.2580

HIGH-RISK 0.5181 0.2429 0.6755 0.2667 0.5489 0.2826
2.1330 2.5320 1.9420

LOGBURN 0.4535 0.3074 0.4137 0.3091
1.4750 1.3380

VERY-RISK 1.2027 0.4399
2.7340

0.4638 0.5370 0.6092

AIC 74.2885 74.1434 74.1388

Maximum likelihood estimates of -coefficients for the three models with asymptotic

standard errors and T-ratios are shown in table 7.2 while table 7.3 contains the implied
values of , , , etc. The explanatory variables of Model A are all significant.
Mean required gain (MRG) increases as expected with time to maturity. A normal 20

Prob[yi = 1]

= Φ((MGAIN00− g*)/σ)

= Φ




1
σ

MGAIN00−
a1

σ
CONST−

a2

σ
MATURITY−

a3

σ
HIGHRISK





≡ Φ(β1 ⋅ MGAIN00+ β2 ⋅ CONST+ β3 ⋅ MATURITY+ β4 ⋅ HIGHRISK)

R2

β

σ a1 a2 a3
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year MBB have a mean of 30.01% and a standard deviation of 10.13%. A pre-tax gain
of 15% would thus induce an estimated 6.91% prepayment rate from a normal 20 year
bond. High-risk bonds have a 5.25% lower MRG and therefore higher prepayment
rates.

Table 7.3:Estimated parameters of the required gain distribution.

Model A Model B Model C

Std.dev., 10.1313 7.6751 7.7757

Mean-Gain ( ) 19.2555 11.7234 13.0463

Maturity ( ) 0.5377 0.6134 0.5629

Mean, 20 year bond 30.0093 23.9920 24.3047

High-Risk ( ) -5.2488 -5.1843 -4.2680

LogBurn ( ) -3.4805 -3.2170

Very-Risk ( ) -9.3522

Prepayment rates at 15% gain

20 year normal 6.91% 12.08 11.57
bond

20 year,
high risk bond 16.75 31.01 25.85

20 year, high risk,
BURNOUT=0.5 16.75 20.90 17.50

The burnout effect of model B is not significant, but the estimation nevertheless shows
some interesting changes. Estimated prepayment rates for bonds with no burnout
(BURNOUT=1) are high compared to model A. This reflects that some of the rela-
tively low prepayment rates could be explained by the burnout variable, while Model
A takes such rates as a sign of lower prepayment rates in general.

σ

a1

a2

a3

a4

a5
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Model C includes theVERYRISKadjustment for the two 11% 2010 bonds. This turns
out significant, but now theHIGHRISK variable becomes insignificant. TheLOG-
BURNvariable is not significant in Model C either107.

107 The explanatory variablesBURNOUT, MGAIN00, HIGHRISK and VERYRISKare obviously not
uncorrelated, which explains why the estimated parameters differs across models.
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Figure 7.3 (a)-(d):

Comparison of

observed and estimated

average prepayment

rates as a function of

the settlement date for

different coupon rates.

(a) Coupon 12%

(b) Coupon 11%

Predicted prepayment rates from the three models for different settlement dates and
averaged across coupon rates are shown in figure 7.3 (a-d). The models are very close
for 9% and 10% bonds, but differences arise for the 11% and 12% issues. Data seem to
contain more intertemporal variation than predicted by the models. Some borrowers
react immediately when interest rates fall, but the high prepayment rates fade out
quickly. The burnout variable of model B and C helps to explain this phenomenon, but
a burnout-measure like the one proposed by McConnell and Singh(1991), cf. section
7.1.4, might be more appropriate. In their model prepayments rise if the current rate
falls below the minimum rate for the last 12 months. An even more promissing sugges-
tion could be to use the change in gain as an explanatory variable.
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Figure 7.3-(c)

Coupon 10%

(d) Coupon 9%

All three models overstate prepayment rates for the last part of the sample period.
Several explanations might be given. The first could be that borrowers react to a
sudden increase in gain but not to a steadily increasing one. The second is the use of a
non-callable term structure to calculate gain. If borrowers use 9% MBBs as their
refinancing alternative they will tend to underestimate the fall in the market rates of
interest due to the counteracting influence from the prepayment option of the 9%
bonds. The third explanation could be that many borrowers (wrongly) expected a sharp
fall in interest rates following the outcome of the EEC referendum and therefore
postponed the prepayment decision.
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Figure 7.4: (a)-(d)

Comparison of

observed and estimated

average prepayment

rates as a function of

last payment year for

different coupon rates.

(a) 12% MBBs

(b) 11% MBBs

Figure 7.4 compares observed and predicted average prepayment rates for different
maturities. The maturity dependency seems to be very well explained by the models,
except for the two 11% 2010 bonds which require the special treatment of model C.

The choice between the different models is not a simple matter. Table 7.2 shows

from the regression of on . Model C performs best by explaining more than
60% of sample variance. The probit model is a heteroscedastic model and the use of
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Figure 7.4:

(c) 10% MBBs

(d)  9% MBBs

is questionable, cf. Amemiya(1981)108. Amemiya prefers the so-called Akaike Infor-
mation Criterion, AIC, which adjusts for heteroscedasticity as well as the number of
parameters used. AIC is defined as minus the log likelihood plus the number of
parameters. In general one should choose the model with the lowest AIC. This points
to model B or C but now with model A close behind. Model A is the only model in
which all included effects come out significant and the increased level of explanatory
power of model B and C might be an in-sample phenomenon. At the present state of
analysis we thus prefer the less sophisticated and hopefully more robust model A.
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108 Observations close to the mean have the highest variance and sole reliance on might bias the
model towards an explanation of these observations.

R2
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The current section has presented an empirical model for Danish prepayment data. The
model was based on a newly constructed data set and the model still needs refinement.
The results are nevertheless quite promising. Model A summarized more than four
years of prepayment experience in a simple four parameter model and we have shown
how small modifications might increase explanatory power considerably.

No significant path-dependent burnout effect was found, but that will most likely
change when new specifications and more data become available. We have identified
some bonds with high or very high prepayment risk. The inclusion of dummy variables
to explain particular bonds is not satisfying and one could hope that the mortgage
institutions change their current practice and make data on the composition of bor-
rowers in the individual issues available to the investors. This would probably remove
a large part of the remaining uncertainty regarding mortgage backed bonds.
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7.4  Pricing results

The estimated prepayment function can be used in many different settings, but our
main ambition will be to predict and price the future cash flow from a MBB. We have
developed a full PC pricing model for Danish MBBs based on the BDT-model dis-
cussed in chapter 6. The current section shows empirical results from this model for
the period January 1988 to July 1991109.

The pricing of MBBs on a single trading date is a multi-stage procedure starting with
an estimation of the zero-coupon term structure. The following analysis uses the
NC-FS model discussed in chapter 2. This is a flat-spline model based on a sample of
large non-callable bonds.

Figure 7.5: Estimated

volatility for zero cou-

pon yields as a function

of time to maturity.

Yield-estimates are

taken from the non-call-

able flat-spline model.

The next step will be to find an estimate of future volatility. Any time dependent
function of future short term volatility can be used in the model. The structure of
future short term volatilities determines the models degree of mean reversion of future
interest rates, cf. Jamshidian(1991) or Hull and White(1990a). Figure 7.5 shows
estimated volatility for different zero coupon yields as a function of time to maturity.
The results are based on weekly term structure estimates for the full period January
1985 to July 1992 as well as two subperiods, 1985-1987 and 1988-1992. The plot
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109Computations of prices and convexities were done with the program RIO/Optikon developed by the
author, cf. the footnote in chapter 6. Data on bonds and prices have been drawn from the Financial
Database of the Aarhus School of Business.
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indicates a trend towards a lower volatility during the sample period. The last period
have witnessed short term yield volatilities around 15% while longer term volatilities
converge toward 12%. These findings are very similar to the ones obtained by
Visholm(1992) on the March 1989 to April 1991 period. The choice of future volatility
may have a considerable impact on the pricing results110, but we have not investigated
this issue further. The following analysis assumes a constant 14% volatility of future
short term interest rates. This estimate is used throughout the sample period.

The estimated term structure and the volatility are used as input to the calibration
procedure of section 3.1.4 which results in a derived lattice for the future short term
interest rates. A shifted lattice, used for the calculation of level-duration, is calculated
next as discussed in section 6.4. The results are stored for repeated use in the follow-
ing.

The pricing procedure is done for a list of MBBs using the approach of section 6.2. For
each MBB scheduled payments are calculated and the backwards pricing procedure
starts at maturity. At each date-event the program calculates the hold-on value of
the bond, , the value of the bond in case of prepayment, , the value of
scheduled payments from the underlying non-callable mortgage, , and the pre-
payment value of the mortgage, , with respect to transaction costs of 2% and a
65 days term of notice. Percentage pre-tax gain from prepayment is found as

which corresponds closely to the vari-
able MGAIN00 used in the estimation of the prepayment function111. The variable

is calculated as the remaining number of years to maturity at . Using
model A of the previous section we find the prepayment rate at date-event (n,s),
as112

(n, s)
V+(n, s) W(n, s)

Bm(n, s)
Wm(n, s)

gm(n, s) = 100⋅ (Bm(n, s) − Wm(n, s))/Bm(n, s)

Tm(n, s) (n, s)
λ(n, s)

110 The future short term interest rate volatilities can be derived from the initial term structure of
volatilities by an extension of the calibration procedure of section 3.1.4. The estimation of a
volatility structure for the BDT-model raises some statistical problems, because long term yields
are not log-normal distributed and the structure of volatilities cannot be constant, cf. Jakobsen and
Jørgensen (1991).

111 If the prepayment function had been estimated on after-tax gain we would use the after-tax pro-
cedure of section 4.3. This adds a small initial step which calibrates the after-tax lattice to the
current after-tax term structure. Computation time for each bond increase by approximately 50% in
the current implementation when after-tax calculations are used.

112The approximation of was taken from Abramowitz and Stegun(1970, p. 932, 26.2.16). A logit
model may be used as a substitute for the probit, which could diminish computation times due to
the simpler distribution function.

Φ(⋅)



  7.4   Pricing results 161

(7.10)

where , if the MBB belongs to the high-risk group and otherwise. The

bond value is finally found as and the
procedure moves to the next date-event. The proces is repeated for each date-event
down to which results in a theoretical value for the callable mortgage backed
bond at time zero. The computation of level-duration requires a similar calculation for
the shifted lattice113.

We have applied the valuation procedure on 59 Wednesdays with intervals of four
weeks for the period January 1988 to July 1991. On each day the theoretical price and
level-duration was calculated for the all 33 NYK MBBs shown in table 7.1 above. A
range of other statistics was calculated as well, some of which are used in the next
section.

Figure 7.6 plots estimated price against market price for all 59 dates in the sample.
Prices have been averaged across all MBBs having the same coupon rate. The esti-
mates from the model follow actual market prices quite closely. One should consider
that these estimates are derived with no input whatsoever from actual MBB-price
behaviour. Only volatility and term structures estimated on non-callable bonds as well
as the four parameters of the prepayment function are used to guide the estimates.

λ(n, s) = Φ(0.0987⋅ gm(n, s) − 1.9006− 0.0531⋅ Tm(n, s) + 0.5181⋅ Hm)

Hm = 1 Hm = 0

V(n, s) = λ(n, s)W(n, s) + (1− λ(n, s))V+(n, s)

(0, 0)

113 The calculations shown below was done with 4 steps per year which corresponds to 7.260 date-
events for a 30 year mortgage. Each valuation including the duration step took 5 seconds on a 25
MHz 386 PC equipped with a mathematical coprocessor. Computation times include some
overhead as the program calculates several derived statistics and saves all results in a database.
Experiments with 8 steps per year gave almost exactly the same pricing results.
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Figure 7.6

(a)-(d): Plot of

average market

price against

average esti-

mated price for

all 59

Wednesdays with

averages taken

across MBBs

having the same

coupon rate.

(a) Coupon 12%

(b) Coupon 11%

Estimated level-duration, i.e. the percentage fall in estimated value from an upward
parallel shift in the yield curve, is shown for all 2010 MBBs in figure 7.7. The plot
conveys the highly coupon rate dependent nature of this measure. Duration is lowest
for the 12% MBBs with estimates of almost zero duration in the last part of the sample
period. Judging from the price plots this seems to capture the actual market price
volatility quite well.
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Figure 7.6

(c) Coupon 10%

(d) Coupon 9%

To be critical our model seems to over-value MBBs relative to the market, especially
in the first half of the period. This is confirmed from the bar-chart of figure 7.8 which
shows average net present value, defined as the difference between estimated price and
market price. Average over-valuation range from zero to almost two price points.
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Figure 7.7: Esti-

mated average

level duration for

different dates.

Averages are taken

accros 2010 bonds

having the same

coupon rate.

Figure 7.8: Net

present value for

33 NYK issues

averaged across

all dates and all

bonds having the

same coupon rate

and closing year.

Several factors may explain the over-valuation. The most obvious is a change in
implied volatility. As seen from figure 7.5 the market have witnessed a fall in volatility
and it would be fair to assume that implied volatility was higher for the first part of the
period, which would reduce the price estimates, cf. section 6.3.

The prepayment function could also explain some of the differences. Model A under-
estimates the sudden increase in prepayments early 1989 as shown above and esti-
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mated prices will therefore tend to increase more than adequate after the fall in interest
rates. This also explains why overvaluation disappears in the period from mid 1989 to
mid 1990 in which model A slightly overestimates actual prepayment rates.

The final explanation could be that the market prices are wrong. This is the subject of
the next section.

7.5  An Analysis of Holding Period Returns, 1988-1992.

We have now developed a full pricing model of Danish callable mortgage backed
bonds. The model is based on a ’micro-economic’ decision model for the individual
mortgage holder. It was shown how the parameters of this behaviorial model can be
inferred from observed prepayment data. The estimated prepayment function has been
combined with a general option valuation model, which takes the zero coupon yield
curve estimated on a sample of non-callable bonds together with an estimate of future
volatility as input. From this combined model prices and duration measures were
calculated for a sample of MBBs in the period 1988 to 1992. The pricing results
corresponded rather closely with actual market prices although some evidence of a
pricing bias was given.

This final section investigates the return characteristics of the model. The ability to
predict and/or explain the structure of future returns is one of the ultimate tests of a
financial pricing model. Close adherence to observed market prices is only a secondary
objective as market prices may be wrong.

To test the performance of the model one could simulate several trading strategies
based on the differences between estimated and actual market prices. The problem
with this approach is that each simulation works like an index, aggregating one par-
ticular aspect of the data. The following analysis employs a regression model similar
to the multi-factor models of stock market returns. In the period from January 1988 to
July 1992 we have calculated a data-set consisting of four-weekly holding period
returns (HPR) for a large number of bonds. Each HPR is combined with a number of
explanatory variables. Finally a regression model is used to analyse how mispricing,
duration etc. affect return. The basic idea is that any effect not present in these data is
probably uninteresting for the investor. The examples given are very preliminary but
they will hopefully indicate the power of this approach.
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To compute returns we have developed yet another PC-program. The program takes a
list of bondcodes as well as a list of return periods as input and outputs a database
containing holding period returns together with other statistics for all bonds in all
periods.

The program draws on several databases. The database,PRICES, contains daily price
quotations for the bonds. Another set of databases,BONDS, summarizes the necessary
information to calculate scheduled payments for each bond. Prices and bond informa-
tion were drawn from the financial database of the Aarhus School of Business. Money
market interest rates for the period have been kindly provided by Bikuben A/S. Finally
the program needs a database,DRAWINGS, containing the actual repayment rates
collected for the analysis of section 7.2.

The calculation of HPR can be described as follows. Consider a single period from
trade date to . Start and ending period market prices and are obtained from
PRICES. To increase the number of return periods we have included prices quoted up
to seven days prior to each trade date. For each period the reinvestment rate is deter-
mined as the money-market rate of interest at . The dates at which transaction at
and becomes effective, and , as well as accrued interest, and , are
calculated according to the Danish bond market conventions. Next the program calcu-
lates the payments from the bond in the period. For non-callable bonds this simply
amounts to scheduled coupon payments and repayments on principal, while
MBB-calculations uses the actual repayment rates taken fromDRAWINGS. Repay-
ments on principal are allocated to the period in which the drawings become pub-
lished, which may be 1-3 months ahead of the final settlement date.

The calculations assume each bond to be bought at and sold at . Total end-of-

period value, , is found as the sum of multiplied by remaining principal plus
the value of any coupons and repayments due in the period. We add interest earned
from reinvestment of payments. This adjustment may become negative if the repay-
ments are due after . HPR for the period is found as . Period
HPR is converted into an annualized return by the multiplication of 360 divided by the
number of interest days between and114.

T1 T2 P1 P2

T1 T1

T2 S1 S2 A1 A2

T1 T2

V2 P2 + A2

S2 (V2 − P1 − A1)/(P1 + A1)

S1 S2

114HPR could be computed for indexed linked bonds and adjustable rate bonds as well.
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The basic data-set used in the following analysis contains holding period returns
(HPR) for all four weeks periods between January 1988 and July 1992. The list of
bondcodes includes the 33 NYK MBBs analysed in the previous section as well as all
large non-callable government bonds. The appendix contains a summary of the basic
data-set. For each bond the listing shows average annualized return for each year in the
sample period, provided returns could be calculated for all 4 weeks periods. The listing
furthermore contains the average reinvestment rate, the standard deviation on monthly
annualized returns and the risk adjusted excess return. Finally starting year values of
yield-to-maturity and Macaulay duration calculated on scheduled payments are given.

A full analysis of the data-set is outside the scope of the present thesis. Instead we
show a few results in order to evaluate the pricing model of the previous section. It
was shown in the previous section our model ’overvalued’ MBBs relative to market
prices especially in the 1988 to 1989 period. For 11% and 10% bonds overvaluation
returned from 1991. The pricing model dynamically compares MBBs to non-callable
bonds of similar risk. If the model is correct, we would expect bonds with positive net
present values115 to be relatively cheap, i.e. market prices are too low, and the MBB
should therefore obtain a high return relative to similar non-callable bonds.

115 Net present value (NPV) is defined as present value less market price. Positive NPV indicates a
’cheap’ bond and vice versa.
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Figure 7.9: Plot

of average HPR

against the stan-

dard deviations

of HPR for

1988-1992.

Non-callable

bonds are

marked by a ’*’,

while MBBs are

marked by their

coupon rate.

(a) 1988

(b) 1989

2 6 10 14 18 22 26 30

Standard deviation

A
nn

ua
liz

ed
 a

ve
ra

ge
 r

et
ur

n 1988

32 

30 

28 

26 

24 

22 

20 

18 

16 

14 

12 

10 

8 

10

10
10

10

10

10

10

1111
11

1111

12
12

12
12

8

99

9

*
*
** *

*
*** *

* *
*

*

*

*

*
*

*

* **
*

*

*

*
*

*

*

2 4 6 8 10 12 14 16 18 20 22

Standard deviation

A
nn

ua
liz

ed
 a

ve
ra

ge
 r

et
ur

n 1989

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

10 10 101010

10
11

11

11

11 11

1212
1212

8

9

9
9

9
9

9
9

*

*

**

*
*

*

*

*
*

*

**

*

**

*
*

*

*

*

*

*

* **

* *



  7.5   An Analysis of Holding Period Returns, 1988-1992. 169

(c) 1990

(d) 1991

To investigate these issues figure 7.9 (a)-(e) show average HPR against its standard
deviation for all bonds in the sample. Standard deviation is taken as a fundamental
indicator of return risk. Computations are done for each of the five years 1988-1992.
The plots should be compared to the price plots 7.6 above.
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(e) 1992

On average the valuation of the model performs remarkably well. No significant devi-
ations are seen in 1988. This would be expected as any excess return from buying a
relatively cheap bond will be small compared to the return following a sharp fall in
interest rates. Returns from 12% and 11% MBB are far above comparable non-callable
bonds in 1989. This corresponds to a period where MBBs change from positive to zero
NPV, which means that the bonds obtain a positive price adjustment on top of high
coupon payments. 11% bonds continue with high HPR in 1990, while the 12% bonds
fares like the non-callable bonds. The 1991-1992 plot shows below average perform-
ance from 12% bonds which now have zero or negative NPV. 11% bonds does well
and the 10% MBBs with high positive NPV have correspondingly high HPR.

The interpretation of plots is highly subjective and the aggregation of data into yearly
averages conceals lots of information. The last part of our analysis therefore turn to the
regression approach mentioned above.

The preliminary regression model used below is inspired by the well-known approxi-
mative return formula by Babcock(1984)

(7.11)
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Babcocks formula states that annualized holding period return for a period of lenght

equals starting yield to maturity, , plus the ’unexpected’ price increase or capital gain
in the period. The price increase is found as the change in yield to maturity multiplied
by a term which include minus the initial Macaulay duration, adjusted to provide
annualized changes.

The basic data-set consists of 3577 individual return observations. For each observa-
tion we have collected a number of explanatory variables.NCYTMequals percentage
yield to maturity of the scheduled payments provided the bond is bought at the
equilibrium prices found from the non-callable term structure.NCYTMis given on a
monthly compounded basis.NCYTMcan be seen as a very rough measure of promised
yield116. DELTAYTM equals the change inNCYTM during the period i.e.

. We useDELTAYTMas a proxy for any change in the level of
interest rates.NCYTM and DELTAYTMare both found from the term structure of
non-callable bonds using no knowledge of actual market prices. For all non-callable
bonds in the sampleNCVOLAis defined asDELTAYTMmultiplied by the Fisher-Weil
level-duration measure (6.4). We expect thatNCVOLAwill be roughly proportional to
the capital gain part of HPR.NCVOLAequals zero for MBBs. In a similar manner
MBBVOLAis defined asDELTAYTMmultiplied by the level-duration measure (6.12)
calculated from the MBB-pricing model.MBBVOLA equals zero for non-callable
bonds.MBBVOLA should explain returns similar toNCVOLA provided the MBB-
model is correctly specified.

To investigate possible effects from an initial mispricing of the bond we define
NCNPVas the relative percentage difference between present value and market price
for non-callable bonds.MBBNPVis defined in a similar way as the relative percentage
difference between the estimated price from the MBB-model and the market price.
NCNPVequals zero for MBBs whileMBBNPVequals zero for non-callable bonds. It
would be expected positive NPV leads to higher HPR. We finally employ a constant
variableONE equal to one and three dummy variablesMBB10, MBB11and MBB12
each of which equals one, if the bond is a 10%, 11% or 12% MBB respectively, and
equals zero otherwise.

Estimation results from three different models are shown in table 7.4. Model X is
given by

∆t

Y1

D1

NCYTM2 − NCYTM1

116Theoretical inclined readers may prefer to skip directly to the results.
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(7.12)

Model Y excludes the constantONE while model Z includesMBB10, MBB11 and
MBB12. All models have been estimated by ordinary least squares.

Table 7.4:Parameter estimates for three different OLS regression models.

Std.Err. Std.Err. Std.Err.
Model X T-ratio Model Y T-ratio Model Z T-ratio

ONE -1.10040 1.75244
-0.628

NCYTM 1.06347 0.18571 0.947247 0.01519 0.971238 0.01660
5.2727 62.363 58.508

NCVOLA -10.9844 0.19206 -10.9999 0.19044 -10.9857 0.19018
-57.193 -57.761 -57.764

NCNPV 2.45919 0.33080 2.45151 0.33055 2.46915 0.33007
7.434 7.416 7.481

MBBVOLA -8.42454 0.12388 -8.44025 0.12132 -8.44244 0.12113
-68.006 -69.573 -69.695

MBBNPV 2.25615 0.12172 2.25409 0.12166 2.50164 0.13957
18.536 18.527 17.924

MBB12 -1.05121 0.54825
-1.917

MBB11 -1.6252 0.50053
-3.247

MBB10 -0.96083 0.41708
-2.304

0.7181 0.7181 0.7192

Comparing model X and Y we see the constant return levelONE is dominated by
NCYTM. NCYTMturns out highly significant in model Y indicating as expected that
the initial yield level derived from the term structure is an important determinant of
HPR.

HPR = β1 ⋅ ONE+ β2 ⋅ NCYTM+ β3 ⋅ NCVOLA

+ β4 ⋅ NCNPV+ β5 ⋅ MBBVOLA+ β6 ⋅ MBBNPV+ ε

R2
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Striking results are obtained for the two duration measures. As expectedNCVOLA
turns out to be highly significant. The coefficient ofNCVOLAmeasures the part of
HPR which can be explained by duration and the actual shift in the non-callable term
structure. A 20 basis point decrease in yield for a non-callable bond with a duration of
say 4 would add an expected 8.8% to annualized HPR for the four week period.

The unexpected result is thatMBBVOLA explains HPR for MBBs with even more
precision. This implies that MBB durations computed from our model may be as
useful for the prediction of returns, calculation of hedge ratios etc. as non-callable
duration measures. The regression shows that a 20 basis point yield decrease would
add an expected 6.8% to HPR for the MBB with MBB-duration of 4. The bias relative
to non-callable duration means that the market adjusts MBB-prices less than expected
following a change in non-callable yields. Some of the bias may be caused by the
negative convexity shown in section 6.4. An other source of bias could be that our
estimated prepayment model reacts too slowly on sudden changes in interest rates.
However, the high precision of the estimate indicates that one could simply divide
MBB durations by 1.3 for comparison. Later refinements of the model may remove the
need for such adjustments.

Another interesting result is that net present value does seem to have a significant
effect on HPR. Buying a MBB with estimated price one percent above market price
would on average have increased annualized HPR more than 2%. No significant differ-
ence is found between MBBs and non-callable bonds117.

Regression model Z uses dummy variables for 10%, 11% and 12% bonds. The results
show that average return from these bonds have been below the yield that would have
been expected from their scheduled payments. This is not an indication of below
average performance because the contribution to HPR from averageMBBNPVmust be
added118. 10% MBBs have an averageMBBNPVof 0.56012 and the average contribu-
tion from MBBNPVandMBB10equals . Aver-−0.96083+ 2.50164⋅ 0.56012= 0.4404

117These results must be interpreted with care because we use non-callable yield as well as net present
value in the same regression. One could argue, that net present value is caused by random fluctu-
ations in long term estimates, which would imply a relatively low promised yield when NPV is
positive. However, the correlation betweenMBBNPVand NCYTM is small at 0.023. Correlation
betweenNCNPVandNCYTMis -0.038. Further research with other specifications will hopefully
clarify this issue.

118 The average values of MBBNPV for different coupon rates have been calculated from the basic
data-set. Figure 7.8 shows MBBNPV averaged accross coupon rates and closing year.



174 7  The Estimation of a Prepayment Model for Danish MBBs

age MBBNPV for the 11% and 12% MBBs are at 1.4646 and 0.9235 respectively
giving these bonds an average HPR lying 2.039 and 1.259 above bonds with similar
risk and non-callable yields. Active traders could of course have done much better by
selling at low NPV and buying when NPVs are high.

It would be very easy to improve the regression model using a more sophisticated
correction of interest rate risk as well as a better measure of promised yield. We hope
to follow up on these issues in forthcoming papers. The sample size could be extended
to say 20.000 observations which would allow the test of almost any hypothesis on the
relative pricing of bonds.

To summarize we have presented a new data-set of four-weekly holding period returns
for the period 1988 to 1992. Plots of average return against standard deviation showed
that the return from the MBB followed the prediction of the model quite closely. These
findings were confirmed by a regression model on the full data set. The regression
procedure allowed us to adjust for the differences in interest rate risk as well as the
difference in non-callable yield. It was shown that average HPR for the 10%, 12% and
especially 11% MBBs has been above HPR for bonds of similar risk and non-callable
yield.

It was furthermore shown that the duration measure derived from the MBB pricing
model has a precision which is equivalent to the duration measures for non-callable
bonds although a simple adjustment must be used to compare the two. Finally the
estimation indicated that active trading based on net present value estimates from the
bond pricing models could contribute considerably to increased performance from
MBBs as well as non-callable bonds.

7.6  Conclusion

This chapter represents the first attempt to base a pricing model for Danish mortgage
backed bonds on actual prepayment experience. The analysis has required a consider-
able amount of data collection and program development much of which has been
finished close to the deadline of this thesis. The work is therefore of a preliminary
nature but the power of the empirical approach has hopefully been demonstrated. A
prepayment function estimated on actual prepayment experience provides a common
basis for the analysis of callable mortgage backed bonds, and the models can be
compared on their predictive ability by use of prepayment data as well as actual
market prices and holding period returns.
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The particular model analysed in chapter 6 and tested in the current chapter has shown
to be a surprisingly good description of the risk and return characteristics at least for
the present sample of bonds. More sophisticated models can be designed as more data
becomes available, but even at the present state of modelling we find it fair to con-
clude that the uncertainty regarding the relative pricing of Danish mortgage backed
bonds has been reduced to a manageable level.
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8 Dansk resumé (Danish Summary)

Formålet med denne afhandling er at udvikle og teste en model til prisfastsættelse af
danske konverterbare realkreditobligationer. Konverterbare realkreditobligationer
udgør mere end 52% af det samlede danske obligationsmarked med en cirkulerende
beholdning på i alt 652 milliarder DKK. Hver enkelt konverterbare obligation udstedes
med sikkerhed i tusindvis af individuelle huslån og betalingerne fra den konverterbare
obligation er summen af de individuelle låntageres betalinger.

Prisfastsættelsen af konverterbare obligationer kompliceres af konverteringsretten,
som tillader hver enkelt låntager at indfri det eksisterende lån til kurs 100 med
efterfølgende optagelse af et nyt lån til gældende markedsrente. Konverteringsretten
kan udnyttes på et vilkårligt tidspunkt i lånets løbetid. Da låntagerne normalt indfrier
højt forrentede lån på tidspunkter, hvor markedsrenten er lav, vil konverteringsretten få
stor betydning for afkastet ved investering i konverterbare obligationer.

Table 1.5: Obligationer udstedt på Københavns Fondsbørs, Maj 1992119.

Nominel Antal Nominel Antal
Obligationstype værdi  serier værdi serier

mio. (%) (%)
DKK

Inkonverterbare obligationer 393.979 359 31,76 16,95

Konverterbare
realkreditobligationer 651.578 1.713 52,53 80,88

Indeksobligationer 121.421 11 9,79 0,52

Variabel forrentede* 73.502 35 5,93 1,65

I alt 1.240.480 2.118 100,00 100,00

119Kilde: Tallene er hentet fra Københavns Fondsbørs officielle database 7. maj 1992. Obligationer i
udenlandsk valuta og præmieobligationer er udelukket. *) Inkluderer 14 variabelt forrentede kon-
verterbare realkreditobligationer med en samlet udestående nominel beholdning på 2095 millioner
DKK.
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Prisfastsættelsesmodellen bygger på en såkaldt arbitrage-fri rentestrukturmodel, i
hvilken den aktuelle nulkuponrentestruktur kombineret med et estimat på den fremti-
dige rentevolatilitet fastlægger den mulige fremtidige stokastiske udvikling af rentes-
trukturen. I denne type model prisfastsættes obligationer med renteafhængigt
betalingsforløb relativt til de aktuelle markedspriser for inkonverterbare obligationer
med faste betalingsforløb. I afhandlingen udvides de arbitrage-frie modeller til brug i
en efter-skat analyse.

Kapitel 2 gennemgår estimation af nulkuponrentestrukturer på det danske obligation-
smarked ved brug af ugentlige data for perioden januar 1985 til juli 1992. Det vises,
hvorledes estimationsteknikken må ændres i løbet af perioden som følge af manglen på
lange inkonverterbare obligationer. Resultaterne peger desuden på en stigende marked-
seffektivitet for statsobligationer fra og med 1988.

Kapitel 3 gennemgår de arbitrage-frie rentestrukturmodeller, og der præsenteres en
generel model til prisfastsættelse af konverterbare realkreditobligationer. Modellen
afhænger af obligationens karakteristika, den stokastiske udvikling i rentestrukturen og
en såkaldt konverteringsfunktion. Konverteringsfunktionen fastlægger hvordan kon-
verteringsraten - dvs. andelen af låntagere som indfrier deres lån i en given periode -
afhænger af grundlæggende parametre såsom renteniveau, restløbetid etc. Ved
forskellige valg af konverteringsfunktion fremkommer forskellige prisfastsættelsemo-
deller.

En stor del af den danske litteratur omkring konverterbare obligationer har beskæftiget
sig med skattesystemets indflydelse på låntagers konverteringsadfærd. Kapitel 4 inde-
holder en diskussion af arbitrageligevægt på obligationsmarkeder, hvor de enkelte
investorer er underlagt forskellige skattesystemer. Som vist af en række forfattere vil
der i et perfekt obligationsmarked opstå muligheder for ubegrænset skattearbitrage,
hvis institutionelle investorer, der er fuldt beskattet af såvel kursgevinst som rente, frit
kan handle med private investorer, som kun beskattes af renteindtægter. I kapitlet
opstilles en model med institutionelle begrænsninger, som bevirker, at der ikke opstår
ubegrænset skattearbitrage til trods for fri adgang til investering og låntagning i obliga-
tioner af enhver løbetid. De foreslåede begrænsninger kan ses som en skærpet udgave
af det nuværende danske mindsterentesystem. Den institutionelle struktur indarbejdes i
den arbitrage-frie rentestrukturmodel på en måde, der muliggør en beregningsmæssig
effektiv prisfastsættelse af optioner såvel før som efter skat. Denne resulterende model
benyttes ved samtlige efter-skat analyser i det følgende.
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De resterende kapitler omhandler specifikation og estimation af konverteringsfunk-
tionen. Kapitel 5 analyserer optimal konvertering. Konverteringsretten ses her som en
amerikansk call-option på et underliggende inkonverterbart lån. Med udgangspunkt i
teorien for amerikanske optioner bestemmes det kritiske renteniveau, ved hvilket den
rationelle låntager udnytter sin konverteringsret. Kapitlet gennemgår, hvordan det kri-
tiske renteniveau afhænger af løbetid, kuponrente, konverteringsomkostninger,
låntagers skattesats samt de specielle aspekter omkring det danske kontantlånssystem.

I en separat analyse udvides modellen til at omfatteombytningsretten, dvs. muligheden
for at omlægge til lån med en højere kuponrente. Det vises, at ombytningsrettens værdi
skyldes at markedets investorer er underlagt forskellige skattesystemer. Der opstilles
en dynamisk model for optimal gældspleje i hvilken den rationelle låntager løbende
fastlægger den optimale udnyttelse af såvel konverterings- som ombytningsret. Det
vises, at ombytningsretten i denne model har en svag indirekte effekt på de konverter-
bare obligationers markedskurser, via ombytningsrettens påvirkning af låntagernes
konverteringsadfærd.

Kapitel 5 afslutter med at vise, at den simple amerikanske optionsmodel, hvor alle
låntagere konverterer på samme tidspunkt, medfører diskontinuiteter i de teoretiske
kurser, som gør modellen uegnet som basis for en egentlig prisfastsættelsesmodel for
konverterbare obligationer.

En empirisk anvendelig model for konverterbare obligationer må tage hensyn til indi-
viduelle forskelle mellem de enkelte låntagere og til at konverteringsadfærden bes-
temmes af mange faktorer, der ikke alle kan beskrives ved økonomisk rationel adfærd.
I kapitel 6 udvikles en model, hvor den individuelle låntager konverterer, så snart et
givet gevinstkrav er opnået. Gevinstkravet antages normaltfordelt på tværs af seriens
låntagere. Ved at variere gevinstkravets fordeling kan der tages hensyn til vidt forskel-
lig adfærd fra de enkelte låntagere.

Betalingerne fra den konverterbare obligation findes som følger. På et givet tidspunkt
beregnes den gevinst, som kan opnåes med den gældende rentestruktur. De låntagere,
for hvem den aktuelle gevinst overstiger den krævede gevinst, konverterer deres lån,
mens resten betaler den normale ydelse. Konverteringsraten bestemmes på ud fra
middelværdi og spredning i gevinstkravsfordelingen. I modsætning til optionsmodellen
fra kapitel 5, hvor konverteringsraten enten var 0 eller 100%, er der i gevinstkrav-mo-
dellen et bredt spektrum af konverteringsrater fra nul til 100%.
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Kapitlet gennemgår forskellige motiver til konvertering og diskuterer, hvordan de kan
indbygges i gevinstkrav-modellen. De teoretiske prisers afhængighed af renteniveau,
volatilitet, rentestrukturens form, restløbetiden, gevinstkravsfordelingen og skatte-
satsen analyseres og resultaterne sammenholdes med modellen fra kapitel 5. Det ses, at
de vigtigste resultater fra analysen af optimal konverteringsadfærd kan indarbejdes ved
at lade gevinstkravfordelingen afhænge af lånets restløbetid og eventuelt andre para-
metre.

Konverterbare obligationer har specielle renterisikoegenskaber, som følge af at beta-
lingsforløbet bestemmes fra låntagersiden. Kapitel 6 fortsætter derfor med en diskus-
sion af korrigerede varigheds- og konveksitetsmål for konverterbare obligationer. Det
vises, at såkaldt negativ konveksitet bevirker, at afkastet af korrekt prisfastsatte
konverterbare obligationer ligger under afkastet fra inkonverterbare obligationer med
samme varighed pånær ved små ændringer i renten. Kapitlet afsluttes med et lille
empirisk eksempel, som belyser, hvordan forskelle i konverteringsraterne mellem sam-
menlignelige obligationsserier udstedt af de tre store realkreditinstitutioner kan for-
klares med delvist uobserverede forskelle i låntagersammensætningen. Eksemplet viser
desuden, at gevinstkravs-modellen har et vist empirisk potentiale.

Kapitel 7 opstiller, estimerer og aftester en komplet prisfastsættelsesmodel for danske
konverterbare realkreditobligationer. Modellen er en variant af gevinstkravsmodellen
fra kapitel 6 med den vigtige ændring, at låntageradfærden estimeres på basis af
observerede udtrækningsprocenter. Herved indrages den tilgængelige viden, om hvor-
dan låntagere historisk har konverteret ved forskellige renteniveauer, i vurderingen af
de fremtidige konverteringsrater for de enkelte serier. I modellen, der så vidt vides er
den første af sin art for det danske marked, anvendes et nykonstrueret datasæt
bestående af udtrækningsprocenter for perioden 1988-92. Lignende empirisk baserede
modeller er i de seneste år blevet udviklet på det amerikanske realkreditmarked.

Kapitel 7 starter med en gennemgang af de vigtigste amerikanske modeller. De obser-
verede udtrækningsprocenter forklares i disse modeller ved såvel det hidtidige rente-
forløb som ved individuelle karakteristika for de enkelte serier. Grundet
kontraktmæssige forskelle mellem det danske og det amerikanske marked kan
modellerne ikke overtages direkte, men der argumenteres for et nyt sæt af forklarende
variable, som tager højde for de specielle egenskaber ved det danske realkreditsystem.
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Efter en kort gennemgang af datamaterialet opstilles den statistiske model til estima-
tion af konverteringsfunktionen. I modsætning til de amerikanske modeller er gevinst-
krav-modellen baseret på en "mikro-økonomisk" beslutningsmodel for de enkelte
låntagere og det vises, at modellens parametre kan estimeres som en variant af de
såkaldte probit-modeller. Forskellige specifikationer undersøges og det konkluderes, at
en simpel model med fire parametre giver en rimelig beskrivelse af de historiske
udtrækningsprocenter på det danske marked. Mere sofistikerede specifikationer bør
testes efterhånden som datamængden øges. Den empiriske analyse identificerer
desuden en gruppe af høj-risiko obligationer, som formentlig er kendetegnet ved en
relativ stor andel af virksomhedslån.

Den estimerede konverteringsfunktion giver en bekvem opsummering af danske
låntageres reaktion på det skiftende renteniveau. Konverteringsfunktionen indbygges
herefter i den generelle arbitrage-frie prisfastsættelsesmodel sammen med estimater på
nulkuponrentestrukturer og rentevolatilitet. Herfra udledes teoretiske priser og varigh-
eder for en stikprøve bestående af 33 Nykredit-obligationer i perioden januar 1988 til
juli 1992. Resultaterne viser, at de konverterbare obligationer har været relativt billige
i store dele af perioden, selv om den generelle overenstemmelse mellem markeds-
kurser og teoretiske kurser er pæn. Vi vil derfor forvente, at de konverterbare obliga-
tioner har givet et relativt højt afkast i perioden sammenlignet med inkonverterbare
obligationer med samme rentefølsomhed.

Hypotesen testes på et datasæt bestående af fire-ugers afkast for såvel de 33 konverter-
bare obligationer som for samtlige store inkonverterbare statsobligationer i perioden
1988-92. Årlige plots af gennemsnitligt afkast mod standardafvigelse viser, at de
konverterbare obligationers afkast følger prisfastsættelsesmodellens forudsigelser
ganske tæt. Den grafiske analyse bekræftes af en foreløbig regressionsmodel på det
fulde datasæt. Regressionsanalysen muliggør en mere præcis justering for forskelle i
såvel renterisko som forskel i renten på de underliggende inkonverterbare obligationer.
Resultaterne er foreløbige, men beregningerne tyder på, at det gennemsnitlige afkast
for 10%, 12% og specielt 11%’s konverterbare obligationer har ligget over inkonver-
terbare obligationer med samme renterisko.

Det vises yderligere, at de korrigerede varighedsmål for konverterbare obligationer
forklarer afkastudsving, som følge af ændringer i den inkonverterbare rentestruktur,
med en præcision, som er sammenlignelig med normale varighedsmål for inkonverter-
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bare obligationer. Der er dog nødvendigt at foretage en simpel justering for at sam-
menligne varigheder på tværs af de to obligationstyper. Denne observation tyder på, at
de korrigerede varighedsmål er velegnede til måling af renterisiko, hedging etc.

Regressionsanalysen indikerer endeligt, at over- og undervurderinger beregnet ud fra
den teoretiske prisfastsættelsesmodel har en signifikant indflydelse på det
efterfølgende afkast. En aktiv handel på basis af den estimerede model ville forment-
ligt have bidraget til et forøget afkast fra de konverterbare obligationer. Tilsvarende
resultater fås for inkonverterbare obligationer.

Afhandlingens endelige konklusion er, at den opstillede model giver en god beskri-
velse af det danske marked for konverterbare realkreditobligationer. Modellen er i
overenstemmelse med grundlæggende finansiel teori omkring arbitrage-fri
prisfastsættelse og den er testet på tilgængelige data for udtræksprocenter, markeds-
kurser og afkast. I modsætning til tidligere modeller giver den empiriske tilgang et
fælles grundlag for diskussion, test og brug af modellen. Efterhånden som
estimationsteknikkerne videreudvikles og flere data bliver tilgængelige, vil de konver-
terbare obligationer forhåbentlig kunne prisfastsættes rutinemæssigt med næsten
samme præcision som tilsvarende inkonverterbare obligationer.
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Appendix A Annualized 4-Weekly Returns 1988 - 1992

Avg. Risk

Avg. No Average Money adjusted

Last yield to Macauley Peri- repay- market Avg. % Std. dev. excess

BondId Coupon Name Year Period maturity Duration ods ment rate return return return

0970271 10,00 3.S. 2017 1988 10,45 8,44 13 0,05 8,84 24,99 22,70 0,71 

0970271 10,00 3.S. 2017 1989 10,86 8,14 13 0,12 9,88 5,44 15,18 -0,29 

0970271 10,00 3.S. 2017 1991 10,35 7,99 13 0,11 10,14 17,53 14,00 0,53 

0970271 10,00 3.S. 2017 1992 10,52 7,85 7 0,32 10,76 9,53 6,03 -0,20 

0970433 9,00 2.S. 2006 1988 9,59 6,67 13 0,18 8,84 25,05 25,40 0,64 

0970433 9,00 2.S. 2006 1989 10,27 6,26 13 0,20 9,88 2,90 18,06 -0,39 

0970433 9,00 2.S. 2006 1990 10,87 5,88 13 0,23 11,60 9,25 27,36 -0,09 

0970433 9,00 2.S. 2006 1991 10,21 5,68 13 0,26 10,14 16,58 17,06 0,38 

0970433 9,00 2.S. 2006 1992 10,08 5,52 7 0,39 10,76 6,41 9,79 -0,44 

0970441 9,00 3.S. 2017 1988 9,81 8,58 13 0,06 8,84 30,03 28,61 0,74 

0970441 9,00 3.S. 2017 1989 10,32 8,22 13 0,07 9,88 3,36 22,05 -0,30 

0970484 9,00 20.S. 2006 1988 9,72 6,75 13 0,18 8,84 25,20 20,70 0,79 

0970484 9,00 20.S. 2006 1989 10,21 6,38 13 0,20 9,88 3,27 20,74 -0,32 

0970484 9,00 20.S. 2006 1990 10,90 5,97 13 0,23 11,60 9,37 22,33 -0,10 

0970484 9,00 20.S. 2006 1991 9,88 5,83 13 0,26 10,14 14,78 14,50 0,32 

0970484 9,00 20.S. 2006 1992 10,09 5,62 7 0,54 10,76 12,61 21,36 0,09 

0970492 9,00 30.S. 2017 1988 9,84 8,69 13 0,07 8,84 30,26 29,07 0,74 

0970492 9,00 30.S. 2017 1989 10,27 8,36 13 0,07 9,88 3,41 22,97 -0,28 

0970492 9,00 30.S. 2017 1990 10,68 8,06 13 0,08 11,60 9,23 36,16 -0,07 

0970492 9,00 30.S. 2017 1991 9,88 8,17 13 0,09 10,14 17,86 18,60 0,41 

0970522 9,00 2.S. 2007 1988 9,70 6,82 13 0,17 8,84 25,46 24,45 0,68 

0970522 9,00 2.S. 2007 1989 10,29 6,43 13 0,19 9,88 3,92 16,84 -0,35 

0970522 9,00 2.S. 2007 1992 10,09 5,72 7 0,41 10,76 8,39 17,90 -0,13 

0970859 8,00 2.S. 2006 1988 9,17 6,85 13 0,19 8,84 27,89 27,38 0,70 

0970859 8,00 2.S. 2006 1989 10,11 6,36 13 0,22 9,88 2,17 19,70 -0,39 

0970859 8,00 2.S. 2006 1990 10,70 5,98 13 0,24 11,60 7,48 23,00 -0,18 

0970859 8,00 2.S. 2006 1991 9,58 5,86 13 0,28 10,14 17,02 15,16 0,45 

0970859 8,00 2.S. 2006 1992 9,70 5,66 7 0,42 10,76 8,11 15,76 -0,17 

0971316 10,00 2.S. 2007 1988 10,35 6,74 13 0,15 8,84 21,66 21,52 0,60 

0971316 10,00 2.S. 2007 1989 10,91 6,40 13 0,18 9,88 6,24 12,75 -0,29 

0971316 10,00 2.S. 2007 1990 11,16 6,08 13 0,18 11,60 9,76 21,87 -0,08 

0971316 10,00 2.S. 2007 1991 10,34 5,78 13 0,36 10,14 15,19 12,82 0,39 

0971316 10,00 2.S. 2007 1992 10,51 5,75 7 0,81 10,76 8,54 4,27 -0,52 

0971413 11,00 3.S. 2017 1988 11,00 4,80 13 0,04 8,84 22,50 23,19 0,59 

0971413 11,00 3.S. 2017 1989 11,54 7,89 13 1,05 9,88 7,86 7,53 -0,27 

0971413 11,00 3.S. 2017 1992 11,34 7,60 7 2,34 10,76 8,33 5,36 -0,45 

0971421 11,00 2.S. 2007 1988 10,41 1,69 13 0,31 8,84 18,56 19,21 0,51 

0971421 11,00 2.S. 2007 1989 11,58 6,29 13 1,90 9,88 7,60 9,07 -0,25 

0971421 11,00 2.S. 2007 1990 11,78 5,96 13 0,17 11,60 12,34 18,80 0,04 

0971421 11,00 2.S. 2007 1991 11,05 5,57 13 1,33 10,14 13,08 6,21 0,47 
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Last yield to Macauley Peri- repay- market Avg. % Std. dev. excess

BondId Coupon Name Year Period maturity Duration ods ment rate return return return

0971421 11,00 2.S. 2007 1992 11,25 5,69 7 2,82 10,76 8,89 6,91 -0,27 

0971480 10,00 12.S.S 2007 1988 10,27 5,76 13 0,41 8,84 19,27 18,82 0,55 

0971480 10,00 12.S.S 2007 1990 11,02 5,27 13 0,45 11,60 12,54 27,47 0,03 

0971650 11,00 12.S.S 2010 1988 11,05 5,07 13 0,42 8,84 18,15 18,84 0,49 

0971650 11,00 12.S.S 2010 1989 11,59 5,67 13 0,61 9,88 7,11 9,24 -0,30 

0971650 11,00 12.S.S 2010 1990 11,69 5,45 13 0,43 11,60 12,62 16,98 0,06 

0971650 11,00 12.S.S 2010 1991 11,00 5,36 13 0,90 10,14 13,93 5,42 0,70 

0971650 11,00 12.S.S 2010 1992 11,26 5,39 7 1,44 10,76 9,41 6,66 -0,20 

0971669 11,00 3.S 2020 1988 10,77 3,08 13 0,05 8,84 23,01 23,30 0,61 

0971669 11,00 3.S 2020 1989 11,60 8,02 13 1,37 9,88 6,03 13,22 -0,29 

0971669 11,00 3.S 2020 1990 11,94 7,79 13 0,04 11,60 12,20 16,54 0,04 

0971669 11,00 3.S 2020 1991 11,20 7,10 13 1,12 10,14 14,55 8,30 0,53 

0971669 11,00 3.S 2020 1992 11,36 7,79 7 2,07 10,76 9,56 5,14 -0,23 

0971677 11,00 2.S 2010 1988 9,86 1,25 13 0,39 8,84 20,03 21,17 0,53 

0971677 11,00 2.S 2010 1989 11,59 6,56 13 2,90 9,88 5,97 11,76 -0,33 

0971677 11,00 2.S 2010 1990 11,79 6,26 13 0,14 11,60 12,62 14,63 0,07 

0971677 11,00 2.S 2010 1991 11,18 5,45 13 2,18 10,14 13,04 7,23 0,40 

0971677 11,00 2.S 2010 1992 11,33 6,02 7 2,84 10,76 10,14 3,29 -0,19 

0971685 10,00 13.S.S 2020 1988 10,46 7,03 13 0,26 8,84 22,69 19,97 0,69 

0971685 10,00 13.S.S 2020 1989 11,02 6,91 13 0,29 9,88 5,34 12,09 -0,38 

0971693 10,00 12.S.S 2010 1988 10,39 6,05 13 0,41 8,84 20,11 17,75 0,64 

0971693 10,00 12.S.S 2010 1989 11,00 5,84 13 0,42 9,88 5,30 13,16 -0,35 

0971693 10,00 12.S.S 2010 1990 11,34 5,65 13 0,42 11,60 11,06 19,18 -0,03 

0971693 10,00 12.S.S 2010 1991 10,41 5,55 13 0,62 10,14 15,03 9,14 0,54 

0971693 10,00 12.S.S 2010 1992 10,44 5,57 7 1,12 10,76 9,50 4,77 -0,26 

0971707 10,00 3.S. 2020 1988 10,44 8,68 13 0,05 8,84 25,59 26,91 0,62 

0971707 10,00 3.S. 2020 1989 10,96 8,34 13 0,07 9,88 5,07 14,90 -0,32 

0971707 10,00 3.S. 2020 1990 11,31 8,08 13 0,05 11,60 9,37 23,92 -0,09 

0971707 10,00 3.S. 2020 1991 10,44 8,25 13 0,11 10,14 18,24 15,12 0,54 

0971707 10,00 3.S. 2020 1992 10,52 8,16 7 0,25 10,76 8,46 3,90 -0,59 

0971715 10,00 2.S. 2010 1988 10,38 7,12 13 0,13 8,84 22,71 22,94 0,60 

0971715 10,00 2.S. 2010 1989 10,94 6,75 13 0,14 9,88 5,31 14,57 -0,31 

0971715 10,00 2.S. 2010 1990 11,29 6,47 13 0,15 11,60 9,96 22,76 -0,07 

0971715 10,00 2.S. 2010 1991 10,42 6,31 13 0,29 10,14 16,41 12,38 0,51 

0971715 10,00 2.S. 2010 1992 10,58 6,22 7 0,61 10,76 8,76 6,38 -0,31 

0971774 12,00 3.S. 2020 1988 9,39 0,90 13 1,17 8,84 19,73 16,06 0,68 

0971774 12,00 3.S. 2020 1989 12,15 7,78 13 3,50 9,88 10,39 7,98 0,06 

0971774 12,00 3.S. 2020 1990 12,45 6,44 13 0,60 11,60 10,16 18,90 -0,08 

0971774 12,00 3.S. 2020 1991 11,97 5,72 13 6,17 10,14 11,06 7,40 0,12 

0971774 12,00 3.S. 2020 1992 12,11 7,50 7 4,79 10,76 9,48 2,92 -0,44 
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0971782 12,00 3.S 2017 1988 9,79 1,23 13 0,90 8,84 18,65 15,03 0,65 

0971782 12,00 3.S 2017 1989 12,15 7,70 13 2,96 9,88 9,86 8,02 0,00 

0971790 12,00 2.S. 2010 1988 9,52 0,92 13 3,23 8,84 16,04 13,69 0,53 

0971790 12,00 2.S. 2010 1989 12,10 6,43 13 3,09 9,88 10,41 7,71 0,07 

0971790 12,00 2.S. 2010 1990 12,35 3,51 13 2,05 11,60 10,80 15,86 -0,05 

0971790 12,00 2.S. 2010 1991 11,88 4,86 13 7,26 10,14 10,59 6,50 0,07 

0971790 12,00 2.S. 2010 1992 12,03 5,88 7 3,13 10,76 10,32 6,00 -0,07 

0971804 12,00 2.S. 2007 1988 8,72 0,84 13 3,90 8,84 14,96 12,37 0,49 

0971804 12,00 2.S. 2007 1989 12,01 6,25 13 3,53 9,88 10,03 7,16 0,02 

0971804 12,00 2.S. 2007 1992 11,91 5,64 7 2,30 10,76 8,46 3,76 -0,61 

0971936 9,00 2.S. 2010 1989 10,45 7,01 13 0,15 9,88 2,56 18,32 -0,40 

0971936 9,00 2.S. 2010 1990 11,04 6,66 13 0,16 11,60 8,92 28,22 -0,10 

0971936 9,00 2.S. 2010 1991 9,96 6,65 13 0,17 10,14 18,18 16,05 0,50 

0971936 9,00 2.S. 2010 1992 10,10 6,46 7 0,26 10,76 6,46 11,15 -0,39 

0971944 9,00 3.S. 2020 1989 10,41 8,65 13 0,06 9,88 2,87 20,31 -0,35 

0971944 9,00 3.S. 2020 1990 10,94 8,30 13 0,05 11,60 8,25 33,74 -0,10 

0971944 9,00 3.S. 2020 1991 9,92 8,60 13 0,06 10,14 19,83 19,16 0,51 

0971944 9,00 3.S. 2020 1992 10,00 8,46 7 0,09 10,76 6,24 11,22 -0,40 

0971979 9,00 12.S.S. 2010 1989 10,46 6,01 13 0,40 9,88 3,49 15,14 -0,42 

0971979 9,00 12.S.S. 2010 1990 11,08 5,77 13 0,41 11,60 10,33 24,37 -0,05 

0971979 9,00 12.S.S. 2010 1991 9,89 5,84 13 0,42 10,14 16,10 10,29 0,58 

0971979 9,00 12.S.S. 2010 1992 9,76 5,75 7 0,61 10,76 8,42 6,84 -0,34 

0971987 9,00 13.S.S. 2020 1989 10,50 7,03 13 0,26 9,88 3,23 17,79 -0,37 

0971987 9,00 13.S.S. 2020 1990 11,05 6,82 13 0,27 11,60 8,44 30,31 -0,10 

0971987 9,00 13.S.S. 2020 1991 10,02 7,05 13 0,27 10,14 18,44 17,69 0,47 

0973203 9,00 2A.S. 2012 1991 10,01 7,10 13 0,16 10,14 19,20 17,58 0,52 

0973203 9,00 2A.S. 2012 1992 10,14 6,93 7 0,23 10,76 5,49 10,15 -0,52 

0973211 9,00 12A.S.S. 2012 1991 10,01 6,12 13 0,42 10,14 17,74 14,71 0,52 

0973211 9,00 12A.S.S. 2012 1992 10,16 6,00 7 0,58 10,76 5,94 9,17 -0,52 

0973238 9,00 3A.S. 2022 1991 9,96 8,83 13 0,06 10,14 21,05 20,68 0,53 

0973238 9,00 3A.S. 2022 1992 10,12 8,66 7 0,08 10,76 4,40 12,72 -0,50 

0973246 9,00 13A.S.S. 2022 1991 9,98 7,32 13 0,28 10,14 19,40 16,50 0,56 

0973246 9,00 13A.S.S. 2022 1992 10,13 7,20 7 0,38 10,76 5,17 10,54 -0,53 

0973254 10,00 2A.S. 2012 1991 10,47 6,96 13 0,16 10,14 17,10 13,42 0,52 

0973254 10,00 2A.S. 2012 1992 10,68 6,81 7 0,29 10,76 7,94 5,92 -0,48 

0973262 10,00 12A.S.S 2012 1991 10,42 5,92 13 0,44 10,14 16,52 10,07 0,63 

0973262 10,00 12A.S.S 2012 1992 10,57 5,86 7 0,73 10,76 8,43 3,96 -0,59 

0973270 10,00 3A.S. 2022 1991 10,45 8,59 13 0,08 10,14 18,82 14,27 0,61 

0973270 10,00 3A.S. 2022 1992 10,62 8,43 7 0,12 10,76 7,47 5,57 -0,59 

0973289 10,00 13A.S.S. 2022 1991 10,41 7,10 13 0,29 10,14 17,24 10,95 0,65 
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0973289 10,00 13A.S.S. 2022 1992 10,55 7,00 7 0,45 10,76 7,99 4,11 -0,67 

0973297 11,00 2A.S. 2012 1991 11,31 4,95 13 7,77 10,14 12,84 8,47 0,32 

0973297 11,00 2A.S. 2012 1992 11,46 6,63 7 3,57 10,76 10,41 6,93 -0,05 

0990493 12,00 S 2001 2001 1988 9,16 4,48 13 0,59 8,84 19,97 16,05 0,69 

0990493 12,00 S 2001 2001 1989 10,36 4,15 13 0,64 9,88 3,16 14,47 -0,46 

0990493 12,00 S 2001 2001 1990 10,72 3,89 13 0,70 11,60 10,15 20,28 -0,07 

0990493 12,00 S 2001 2001 1991 9,66 3,72 13 0,77 10,14 15,35 11,46 0,45 

0990493 12,00 S 2001 2001 1992 9,84 3,57 7 0,00 10,76 6,25 13,93 -0,32 

0990701 10,00 S 1993 1993 1988 8,61 2,03 13 1,28 8,84 12,90 9,86 0,41 

0990701 10,00 S 1993 1993 1989 10,73 1,62 13 1,54 9,88 4,33 7,89 -0,70 

0990701 10,00 S 1993 1993 1990 10,59 1,23 13 1,92 11,60 11,06 9,10 -0,06 

0990701 10,00 S 1993 1993 1991 9,86 0,80 13 2,56 10,14 9,77 3,16 -0,12 

0990701 10,00 S 1993 1993 1992 10,44 0,81 7 7,14 10,76 7,20 3,94 -0,90 

0990728 10,00 St.lån 1993 1988 8,88 3,70 13 0,00 8,84 16,79 16,80 0,47 

0990728 10,00 St.lån 1993 1989 10,43 2,99 13 0,00 9,88 3,77 10,98 -0,56 

0990728 10,00 St.lån 1993 1990 10,44 2,25 13 0,00 11,60 10,96 11,70 -0,05 

0990728 10,00 St.lån 1993 1991 9,77 1,43 13 0,00 10,14 11,06 4,73 0,19 

0990728 10,00 St.lån 1993 1992 10,50 0,98 7 0,00 10,76 8,25 1,93 -1,30 

0990736 10,00 S 1999 1999 1988 9,12 4,17 13 0,64 8,84 17,60 15,11 0,58 

0990736 10,00 S 1999 1999 1989 10,37 3,81 13 0,70 9,88 3,02 13,57 -0,51 

0990736 10,00 S 1999 1999 1990 10,60 3,53 13 0,77 11,60 10,50 18,59 -0,06 

0990736 10,00 S 1999 1999 1991 9,69 3,28 13 0,85 10,14 14,27 10,04 0,41 

0990736 10,00 S 1999 1999 1992 9,96 3,41 7 1,79 10,76 6,37 12,06 -0,36 

0990744 10,00 S 2004 2004 1988 9,30 5,57 13 0,45 8,84 21,67 17,97 0,71 

0990744 10,00 S 2004 2004 1989 10,18 5,24 13 0,48 9,88 3,10 15,58 -0,44 

0990744 10,00 S 2004 2004 1990 10,63 4,99 13 0,51 11,60 9,30 25,31 -0,09 

0990744 10,00 S 2004 2004 1991 9,52 4,89 13 0,55 10,14 16,63 13,17 0,49 

0990744 10,00 S 2004 2004 1992 9,68 4,34 7 1,10 10,76 6,56 13,71 -0,31 

0990825 10,00 S 1994 1994 1988 8,72 2,39 13 1,10 8,84 13,51 11,15 0,42 

0990825 10,00 S 1994 1994 1989 10,57 1,99 13 1,28 9,88 4,11 8,61 -0,67 

0990825 10,00 S 1994 1994 1990 10,60 1,62 13 1,54 11,60 10,74 10,19 -0,08 

0990825 10,00 S 1994 1994 1991 9,78 1,23 13 1,92 10,14 10,56 3,46 0,12 

0990825 10,00 S 1994 1994 1992 10,15 1,27 7 4,76 10,76 7,54 2,53 -1,27 

0990884 10,00 S 1990 1990 1988 7,14 0,55 13 2,56 8,84 10,87 4,83 0,42 

0990892 10,00 S 1995 1995 1988 8,86 2,73 13 0,96 8,84 14,16 11,34 0,47 

0990892 10,00 S 1995 1995 1989 10,51 2,35 13 1,10 9,88 4,26 8,44 -0,67 

0990892 10,00 S 1995 1995 1990 10,62 2,00 13 1,28 11,60 10,07 11,22 -0,14 

0990892 10,00 S 1995 1995 1991 9,65 1,64 13 1,54 10,14 11,54 5,32 0,26 

0990892 10,00 S 1995 1995 1992 9,99 1,70 7 3,57 10,76 7,28 3,53 -0,99 

0990914 10,00 St.lån 1994 1988 9,02 4,08 13 0,00 8,84 17,29 23,22 0,36 
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0990914 10,00 St.lån 1994 1989 10,33 3,43 13 0,00 9,88 3,90 11,68 -0,51 

0990914 10,00 St.lån 1994 1990 10,38 2,75 13 0,00 11,60 11,09 15,66 -0,03 

0990914 10,00 St.lån 1994 1991 9,57 2,00 13 0,00 10,14 12,11 7,00 0,28 

0990914 10,00 St.lån 1994 1992 10,10 1,64 7 0,00 10,76 7,42 6,16 -0,54 

0990922 10,00 St.lån 1989 1988 8,39 1,01 13 0,00 8,84 11,19 7,41 0,32 

0990949 10,00 St.lån 1992 1988 8,70 3,17 13 0,00 8,84 14,46 13,37 0,42 

0990949 10,00 St.lån 1992 1989 10,51 2,41 13 0,00 9,88 4,12 8,80 -0,65 

0990949 10,00 St.lån 1992 1990 10,50 1,59 13 0,00 11,60 11,05 10,05 -0,05 

0990949 10,00 St.lån 1992 1991 10,07 0,68 13 0,00 10,14 10,45 2,73 0,11 

0990949 10,00 St.lån 1992 1992 12,02 0,15 7 0,00 10,76 9,28 1,58 -0,94 

0990957 10,00 St.lån 1991 1988 8,60 2,17 13 0,00 8,84 12,92 9,67 0,42 

0990957 10,00 St.lån 1991 1989 10,85 1,34 13 0,00 9,88 5,27 6,83 -0,67 

0990957 10,00 St.lån 1991 1990 10,81 0,43 13 0,00 11,60 11,08 4,84 -0,11 

0990965 10,00 St.lån 1990 1988 8,55 1,84 13 0,00 8,84 12,55 10,83 0,34 

0990965 10,00 St.lån 1990 1989 11,03 0,93 13 0,00 9,88 6,21 5,51 -0,67 

0991023 10,00 S 1991 1991 1988 8,60 1,42 13 2,56 8,84 10,54 6,44 0,26 

0991112 9,00 S 1991 1991 1988 8,52 1,43 13 2,56 8,84 10,74 7,20 0,26 

0991112 9,00 S 1991 1991 1989 10,74 1,01 13 3,85 9,88 6,60 4,91 -0,67 

0991139 9,00 St.lån 1989 1988 10,12 1,01 13 0,00 8,84 11,06 7,72 0,29 

0991147 9,00 St.lån 1990 1988 8,52 1,84 13 0,00 8,84 12,81 11,67 0,34 

0991147 9,00 St.lån 1990 1989 10,81 0,93 13 0,00 9,88 6,20 4,99 -0,74 

0991252 8,00 St.lån 1989 1988 9,68 1,85 13 0,00 8,84 10,52 7,64 0,22 

0991260 8,00 St.lån 1990 1988 8,22 1,85 13 0,00 8,84 11,58 8,61 0,32 

0991260 8,00 St.lån 1990 1989 9,92 0,93 13 0,00 9,88 5,79 5,23 -0,78 

0991279 8,00 St.lån 1991 1988 8,29 2,21 13 0,00 8,84 13,28 11,96 0,37 

0991279 8,00 St.lån 1991 1989 10,09 1,35 13 0,00 9,88 4,53 6,55 -0,82 

0991279 8,00 St.lån 1991 1990 10,01 0,43 13 0,00 11,60 10,63 3,85 -0,25 

0991287 8,00 St.lån 1992 1988 8,24 3,25 13 0,00 8,84 13,76 14,24 0,35 

0991287 8,00 St.lån 1992 1989 9,98 2,46 13 0,00 9,88 3,87 8,89 -0,68 

0991287 8,00 St.lån 1992 1990 10,18 1,61 13 0,00 11,60 10,01 10,81 -0,15 

0991287 8,00 St.lån 1992 1991 9,46 0,68 13 0,00 10,14 10,12 4,92 0,00 

0991287 8,00 St.lån 1992 1992 10,87 0,15 7 0,00 10,76 8,72 1,00 -2,04 

0991295 8,00 S 1986/ 1989 1988 9,56 1,39 13 3,85 8,84 8,78 5,48 -0,01 

0991309 8,00 S 1992 1992 1988 8,23 1,85 13 1,92 8,84 9,77 7,76 0,12 

0991309 8,00 S 1992 1992 1989 9,58 1,44 13 2,56 9,88 5,14 7,17 -0,66 

0991309 8,00 S 1992 1992 1990 9,72 1,02 13 3,85 11,60 8,36 6,69 -0,48 

0991368 10,00 Stgb.I 1989 1988 8,27 0,19 13 0,00 8,84 9,81 3,65 0,27 

0991376 10,00 S 1987/ 1990 1988 7,60 0,99 13 2,56 8,84 11,10 7,62 0,30 

0991376 10,00 S 1987/ 1990 1989 11,99 0,51 13 3,85 9,88 7,29 4,44 -0,58 

0991384 10,00 Stgb.II 1989 1988 8,43 0,44 13 0,00 8,84 10,40 3,98 0,39 
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0991392 10,00 Stgb.III 1989 1988 8,31 0,69 13 0,00 8,84 10,69 5,33 0,35 

0991406 10,00 Stgb.IV 1989 1988 8,36 0,94 13 0,00 8,84 11,16 5,98 0,39 

0991414 10,00 Stgb. I 1990 1988 8,38 1,10 13 0,00 8,84 11,52 6,96 0,38 

0991414 10,00 Stgb. I 1990 1989 12,02 0,19 13 0,00 9,88 7,76 2,80 -0,76 

0991422 10,00 St.lån 1996 1989 10,12 5,28 13 0,00 9,88 3,13 15,73 -0,43 

0991422 10,00 St.lån 1996 1990 10,44 4,71 13 0,00 11,60 10,25 25,15 -0,05 

0991422 10,00 St.lån 1996 1991 9,41 4,11 13 0,00 10,14 14,92 11,93 0,40 

0991422 10,00 St.lån 1996 1992 9,84 3,57 7 0,00 10,76 5,96 16,22 -0,30 

0991430 10,00 Stgb.II 1990 1989 11,27 0,44 13 0,00 9,88 7,35 3,23 -0,78 

0991449 9,00 Stgb. III 1990 1989 10,90 0,69 13 0,00 9,88 6,67 3,71 -0,86 

0991457 9,00 Stgb. II 1990 1989 11,04 0,44 13 0,00 9,88 7,35 3,19 -0,79 

0991465 9,00 Stgb IV 1990 1989 10,91 0,94 13 0,00 9,88 6,29 4,66 -0,77 

0991503 9,00 St.lån 1996 1989 10,13 5,37 13 0,00 9,88 1,31 19,72 -0,43 

0991503 9,00 St.lån 1996 1990 10,55 4,78 13 0,00 11,60 10,67 24,80 -0,04 

0991503 9,00 St.lån 1996 1991 9,29 4,17 13 0,00 10,14 16,26 12,62 0,48 

0991503 9,00 St.lån 1996 1992 9,62 3,63 7 0,00 10,76 5,91 13,78 -0,35 

0991511 9,00 St.lån 1994 1989 10,31 4,15 13 0,00 9,88 2,22 13,74 -0,56 

0991511 9,00 St.lån 1994 1990 10,51 3,45 13 0,00 11,60 10,95 16,04 -0,04 

0991511 9,00 St.lån 1994 1991 9,46 2,69 13 0,00 10,14 13,59 8,55 0,40 

0991511 9,00 St.lån 1994 1992 9,88 2,15 7 0,00 10,76 6,79 8,91 -0,45 

0991546 9,00 St.lån 1992 1989 10,43 2,43 13 0,00 9,88 4,48 8,61 -0,63 

0991546 9,00 St.lån 1992 1990 10,57 1,60 13 0,00 11,60 10,28 8,51 -0,15 

0991546 9,00 St.lån 1992 1991 9,89 0,68 13 0,00 10,14 10,56 3,07 0,14 

0991546 9,00 St.lån 1992 1992 11,80 0,15 7 0,00 10,76 9,16 0,70 -2,30 

0991554 9,00 St.lån 1998 1989 10,07 6,38 13 0,00 9,88 1,41 21,94 -0,39 

0991554 9,00 St.lån 1998 1990 10,55 5,87 13 0,00 11,60 10,98 28,30 -0,02 

0991554 9,00 St.lån 1998 1991 9,17 5,41 13 0,00 10,14 17,93 14,58 0,53 

0991554 9,00 St.lån 1998 1992 9,38 4,87 7 0,00 10,76 4,61 13,63 -0,45 

0991562 9,00 stgb. I 1991 1990 10,26 0,19 13 0,00 11,60 11,59 3,70 0,00 

0991570 9,00 Stgb.II 1991 1990 10,78 0,44 13 0,00 11,60 11,22 4,01 -0,09 

0991589 9,00 Stgb. III 1991 1990 10,65 0,69 13 0,00 11,60 11,26 5,77 -0,06 

0991597 9,00 Stgb.IV 1991 1990 10,61 0,94 13 0,00 11,60 11,55 6,87 -0,01 

0991600 9,00 Stgb. I 1992 1990 10,62 1,11 13 0,00 11,60 11,41 8,13 -0,02 

0991600 9,00 Stgb. I 1992 1991 9,71 0,20 13 0,00 10,14 10,24 2,25 0,04 

0991619 9,00 St.lån 2000 1990 10,51 6,77 13 0,00 11,60 9,32 31,24 -0,07 

0991619 9,00 St.lån 2000 1991 9,03 6,47 13 0,00 10,14 19,81 18,14 0,53 

0991619 9,00 St.lån 2000 1992 9,13 5,92 7 0,00 10,76 4,37 15,62 -0,41 

0991627 9,00 STGB.II 1992 1991 9,83 0,45 13 0,00 10,14 10,49 2,87 0,12 

0991635 9,00 STGB.III 1992 1991 9,87 0,70 13 0,00 10,14 10,56 3,49 0,12 

0991635 9,00 STGB.III 1992 1992 11,21 0,16 7 0,00 10,76 9,41 0,47 -2,88 
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0991643 9,00 St.lån 1995 1991 9,40 3,46 13 0,00 10,14 15,01 10,66 0,46 

0991643 9,00 St.lån 1995 1992 9,70 2,92 7 0,00 10,76 5,88 9,63 -0,51 

0991651 9,00 STGB. IV 1992 1991 9,73 0,95 13 0,00 10,14 10,83 4,35 0,16 

0991651 9,00 STGB. IV 1992 1992 10,93 0,41 7 0,00 10,76 8,97 1,24 -1,44 

0991678 9,00 STGB. I 1993 1991 9,86 1,11 13 0,00 10,14 11,07 4,68 0,20 

0991678 9,00 STGB. I 1993 1992 10,64 0,66 7 0,00 10,76 8,43 1,48 -1,57 

0991686 9,00 STGB. II 1993 1992 10,47 0,91 7 0,00 10,76 8,21 2,32 -1,10 

0991694 8,00 STGB III 1993 1992 10,15 1,09 7 0,00 10,76 7,51 4,64 -0,70 

0991708 8,00 STGB. IV 1993 1992 10,07 1,34 7 0,00 10,76 7,26 5,14 -0,68 

0991716 8,00 St.lån 2003 1992 9,02 7,48 7 0,00 10,76 3,26 20,00 -0,38 

0991724 8,00 STGB. I 1994 1992 10,03 1,59 7 0,00 10,76 7,24 6,79 -0,52 
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